Advertisement

Nanofluids Containing Titanium Dioxide: Thermo-physical Properties and Energy Saving Applications

  • Kin Yuen LeongEmail author
  • W. H. Azmi
Reference work entry

Abstract

Heat transfer fluids such as water, water/ethylene glycol mixtures, and oil are commonly used in thermal system as the medium to transmit heat from one place to another. These fluids are low in cost and widely available in the market, but exhibit low thermal conductivity. Nanoparticles such as titanium dioxide (TiO2) are added to improve the thermal conductivity of these base fluids. Suspension of nanoparticles in a base fluid is known as nanofluid. Therefore, this chapter is dedicated to review the thermo-physical properties of TiO2 nanofluid, specifically the thermal conductivity, viscosity, density, and specific heat and its energy saving applications. Lastly, the conclusion as well as the future outlook of TiO2 nanofluids are presented.

Keywords

Nanofluids Titanium dioxide Thermo-physical Energy saving 

References

  1. 1.
    Maxwell JL (1891) A treatise on electricity and magnetism, unabridged, 3rd edn. Clarendron Press, Oxford, UKGoogle Scholar
  2. 2.
    Choi SUS (1998) Nanofluid technology: current status and future research. Argonne National Laboratory. https://www.osti.gov/scitech/servlets/purl/11048. Accessed 23 July 2017
  3. 3.
    Das PK, Mallik AK, Ganguly R, Santra AK (2016) Synthesis and characterization of TiO2–water nanofluids with different surfactants. Int Commun Heat Mass Transf 75:341–348CrossRefGoogle Scholar
  4. 4.
    Wei B, Zou C, Li X (2017) Experimental investigation on stability and thermal conductivity of diathermic oil based TiO2 nanofluids. Int J Heat Mass Transf 104:537–543CrossRefGoogle Scholar
  5. 5.
    Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn., Revised and Expanded edn. Marcel Dekker, Inc, New YorkCrossRefGoogle Scholar
  6. 6.
    Kong L, Sun J, Bao Y (2017) Preparation, characterization and tribological mechanism of nanofluids. RCS Adv 7:12599Google Scholar
  7. 7.
    Li X, Zhu D, Wang X (2007) Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J Colloid Interface Sci 310(2):456–463CrossRefGoogle Scholar
  8. 8.
    Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54(17–18):4051–4068CrossRefGoogle Scholar
  9. 9.
    Haghighi EB, Nikkam N, Saleemi M, Behi M, Mirmohammadi SA, Poth H, Khodabandeh R, Toprak MS, Muhammed M, Palm B (2013) Shelf stability of nanofluids and its effect on thermal conductivity and viscosity. Meas Sci Technol 24(10):105301CrossRefGoogle Scholar
  10. 10.
    Yu W, France DM, Choi SUS, Routbort JL (2007) Review and assessment of nanofluid technology for transportation and other applications. Argonne National Laboratory. http://www.ipd.anl.gov/anlpubs/2007/05/59282.pdf. Accessed 23 July 2017
  11. 11.
    Chang H, Tsung TT, Yang YC, Chen LC, Lin HM, Lin CK, Jwo CS (2005) Nanoparticle suspension preparation using the arc spray nanoparticle synthesis system combined with ultrasonic vibration and rotating electrode. Int J Adv Manuf Technol 26(5–6):552–558CrossRefGoogle Scholar
  12. 12.
    Zhelezny VP, Lukianov NN, Khliyeva OY, Nikulina AS, Melnyk AV (2017) A complex investigation of the nanofluids R600а-mineral oil-Al2O3 and R600а-mineral oil-TiO2. Thermophysical properties. Int J Refrig Rev Int Froid 74:488–504CrossRefGoogle Scholar
  13. 13.
    Chakraborty S, Sarkar I, Behera DK, Pal SK, Chakraborty S (2017) Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid. Powder Technol 307:10–24CrossRefGoogle Scholar
  14. 14.
    Xia GD, Liu R, Wang J, Du M (2016) The characteristics of convective heat transfer in microchannel heat sinks using Al2O3 and TiO2 nanofluids. Int Commun Heat Mass Transf 76:256–264CrossRefGoogle Scholar
  15. 15.
    Bobbo S, Fedele L, Benetti A, Colla L, Fabrizio M, Pagura C, Barison S (2012) Viscosity of water based SWCNH and TiO2 nanofluids. Exp Thermal Fluid Sci 36:65–71CrossRefGoogle Scholar
  16. 16.
    Suganthi KS, Rajan KS (2017) Metal oxide nanofluids: review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev 76:226–255CrossRefGoogle Scholar
  17. 17.
    Lee JH, Lee SH, Choi CJ, Jang SP, Choi SUS (2010) A review of thermal conductivity data, mechanisms and models for nanofluids. Int J Micro-Nano Scale Transp 1(4):269–322CrossRefGoogle Scholar
  18. 18.
    Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863zbMATHCrossRefGoogle Scholar
  19. 19.
    Prasher R, Bhattacharya P, Phelan PE (2005a) Brownian-motion-based convective-conductive model for the effective thermal conductivity of Nanofluids. J Heat Transf Trans ASME 128(6): 588–595CrossRefGoogle Scholar
  20. 20.
    Xue L, Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2004) Effect of liquid layering at the liquid–solid interface on thermal transport. Int J Heat Mass Transf 47(19–20):4277–4284zbMATHCrossRefGoogle Scholar
  21. 21.
    Xie H, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf 48(14):2926–2932zbMATHCrossRefGoogle Scholar
  22. 22.
    Das PK (2017) A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J Mol Liq 240:420–446CrossRefGoogle Scholar
  23. 23.
    Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam I(3):187–191CrossRefGoogle Scholar
  24. 24.
    Yu W, Choi SUS (2004) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–crosser model. J Nanopart Res 6(4):355–361CrossRefGoogle Scholar
  25. 25.
    Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5(1–5):167–171CrossRefGoogle Scholar
  26. 26.
    Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6(6):577–588CrossRefGoogle Scholar
  27. 27.
    Prasher R, Bhattacharya P, Phelan PE (2005b) Thermal conductivity of nanoscale colloidal solutions (Nanofluids). Phys Rev Lett 94(2):025901CrossRefGoogle Scholar
  28. 28.
    Jang SP, Choi SUS (2007) Effects of various parameters on Nanofluid thermal conductivity. J Heat Transf Trans ASME 129:617–623CrossRefGoogle Scholar
  29. 29.
    Abdolbaqi MK, Sidik NAC, Aziz A, Mamat R, Azmi WH, Yazid MNAWM, Najafi G (2016) An experimental determination of thermal conductivity and viscosity of BioGlycol/water based TiO2 nanofluids. Int Commun Heat Mass Transf 77:22–32CrossRefGoogle Scholar
  30. 30.
    Azmi WH, Abdul Hamid K, Mamat R, Sharma KV, Mohamad MS (2016) Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water – ethylene glycol mixture. Appl Therm Eng 106:1190–1199CrossRefGoogle Scholar
  31. 31.
    Duangthongsuk W, Wongwises S (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Thermal Fluid Sci 33(4):706–714CrossRefGoogle Scholar
  32. 32.
    Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2 – water based nanofluids. Int J Therm Sci 44(4):367–373CrossRefGoogle Scholar
  33. 33.
    Longo GA, Zilio C (2011) Experimental measurement of thermophysical properties of oxide–water nano-fluids down to ice-point. Exp Thermal Fluid Sci 35(7):1313–1324CrossRefGoogle Scholar
  34. 34.
    Maheshwary PB, Handa CC, Nemade KR (2017) A comprehensive study of effect of concentration, particle size and particle shape on thermal conductivity of titania/water based nanofluid. Appl Therm Eng 119:79–88CrossRefGoogle Scholar
  35. 35.
    Cengel YA, Ghajar AJ (2015) Heat and mass transfer, fundamentals and applications, vol 5. McGraw Hill, New YorkGoogle Scholar
  36. 36.
    Palabiyik I, Musina Z, Witharana S, Ding Y (2011) Dispersion stability and thermal conductivity of propylene glycol-based nanofluids. J Nanopart Res 13(10):5049–5055CrossRefGoogle Scholar
  37. 37.
    Wang XJ, Li H, Li XF, Wang ZF, Lin F (2011) Stability of TiO2 and Al2O3 Nanofluids. Chin Phys Lett 28(8):086601CrossRefGoogle Scholar
  38. 38.
    Azizian R, Doroodchi E, Moghtaderi B (2015) Influence of controlled aggregation on thermal conductivity of nanofluids. J Heat Transf Trans ASME 138(2):021301–021306CrossRefGoogle Scholar
  39. 39.
    Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C (2005) Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 26(3):647–664CrossRefGoogle Scholar
  40. 40.
    Leong KY, Saidur R, Mahlia TMI, Yau YH (2012) Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature. Int Commun Heat Mass Transf 39(8):1169–1175CrossRefGoogle Scholar
  41. 41.
    Einstein A (1906) A new determination of molecular dimensions. Ann Phys 4:37–62Google Scholar
  42. 42.
    Brinkman H (1952) The viscosity of concentrated suspension and solutions. J Chem Phys 20:571–581CrossRefGoogle Scholar
  43. 43.
    Brenner H, Condiff DW (1974) Transport mechanics in systems of orientable particles. IV. Convective transport. J Colloid Interface Sci 47(1):199–264CrossRefGoogle Scholar
  44. 44.
    Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117MathSciNetCrossRefGoogle Scholar
  45. 45.
    Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. J Rheol 3:137–152zbMATHGoogle Scholar
  46. 46.
    Lundgren TS (1972) Slow flow through stationary random beds and suspensions of spheres. J Fluid Mech 51(2):273–299zbMATHCrossRefGoogle Scholar
  47. 47.
    Tseng WJ, Lin KC (2003) Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater Sci Eng A 355(1–2):186–192CrossRefGoogle Scholar
  48. 48.
    Chen H, Ding Y, Tang C (2007a) Rheological behaviour of nanofluids. New J Phys 9(10):367CrossRefGoogle Scholar
  49. 49.
    Chen H, Ding Y, He Y, Tan C (2007b) Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett 444(4):333–337CrossRefGoogle Scholar
  50. 50.
    Masoumi N, Sohrabi N, Behzadmehr A (2009) A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys 42(5):055501CrossRefGoogle Scholar
  51. 51.
    Fedele L, Colla L, Bobbo S (2012) Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. Int J Refrig Rev Int Froid 35(5):1359–1366CrossRefGoogle Scholar
  52. 52.
    Nguyen CT, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, Angue Mintsa H (2007) Temperature and particle-size dependent viscosity data for water-based nanofluids – hysteresis phenomenon. Int J Heat Fluid Flow 28(6):1492–1506CrossRefGoogle Scholar
  53. 53.
    Attari H, Derakhshanfard F, Darvanjooghi MHK (2017) Effect of temperature and mass fraction on viscosity of crude oil-based nanofluids containing oxide nanoparticles. Int Commun Heat Mass Transf 82:103–113CrossRefGoogle Scholar
  54. 54.
    Jarahnejad M, Haghighi EB, Saleemi M, Nikkam N, Khodabandeh R, Palm B, Toprak MS, Muhammed M (2015) Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids. Rheol Acta 54(5):411–422CrossRefGoogle Scholar
  55. 55.
    Longo GA, Zilio C (2013) Experimental measurements of Thermophysical properties of Al2O3– and TiO2–ethylene glycol Nanofluids. Int J Thermophys 34(7):1288–1307CrossRefGoogle Scholar
  56. 56.
    Saleh R, Putra N, Wibowo RE, Septiadi WN, Prakoso SP (2014) Titanium dioxide nanofluids for heat transfer applications. Exp Thermal Fluid Sci 52:19–29CrossRefGoogle Scholar
  57. 57.
    Salimi-Yasar H, Zeinali Heris S, Shanbedi M, Amiri A, Kameli A (2017) Experimental investigation of thermal properties of cutting fluid using soluble oil-based TiO2 nanofluid. Powder Technol 310:213–220CrossRefGoogle Scholar
  58. 58.
    Timofeeva EV, Yu W, France DM, Singh D, Routbort JL (2011) Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nanofluids. J Appl Phys 109:014914–014915CrossRefGoogle Scholar
  59. 59.
    He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50(11):2272–2281zbMATHCrossRefGoogle Scholar
  60. 60.
    Mahbubul IM, Elcioglu EB, Saidur R, Amalina MA (2017) Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason Sonochem 37: 360–367CrossRefGoogle Scholar
  61. 61.
    Khanafer K, Vafai K (2011) A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf 54(19–20):4410–4428zbMATHCrossRefGoogle Scholar
  62. 62.
    Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11(2):151–170CrossRefGoogle Scholar
  63. 63.
    Said Z, Sajid MH, Kamyar A, Saidur R (2013) Experimental investigation on the stability and density of TiO2, Al2O3, SiO2 and TiSiO4. IOP Conf Ser: Earth Environ Sci 16(1):012002CrossRefGoogle Scholar
  64. 64.
    Eiamsa-ard S, Kiatkittipong K, Jedsadaratanachai W (2015) Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes. Int J Eng Sci Technol 18(3):336–350CrossRefGoogle Scholar
  65. 65.
    Farajollahi B, Etemad SG, Hojjat M (2010) Heat transfer of nanofluids in a shell and tube heat exchanger. Int J Heat Mass Transf 53(1–3):12–17zbMATHCrossRefGoogle Scholar
  66. 66.
    Ham J, Kim J, Cho H (2016) Theoretical analysis of thermal performance in a plate type liquid heat exchanger using various nanofluids based on LiBr solution. Appl Therm Eng 108: 1020–1032CrossRefGoogle Scholar
  67. 67.
    Kumar V, Tiwari AK, Ghosh SK (2015) Application of nanofluids in plate heat exchanger: a review. Energy Convers Manag 105:1017–1036CrossRefGoogle Scholar
  68. 68.
    Taghizadeh-Tabari Z, Zeinali Heris S, Moradi M, Kahani M (2016) The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries. Renew Sustain Energy Rev 58:1318–1326CrossRefGoogle Scholar
  69. 69.
    Khedkar RS, Sonawane SS, Wasewar KL (2014) Heat transfer study on concentric tube heat exchanger using TiO2–water based nanofluid. Int Commun Heat Mass Transf 57:163–169CrossRefGoogle Scholar
  70. 70.
    Bi S, Guo K, Liu Z, Wu J (2011) Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Convers Manag 52(1):733–737CrossRefGoogle Scholar
  71. 71.
    Azmi WH, Sharif MZ, Yusof TM, Mamat R, Redhwan AAM (2017) Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – a review. Renew Sustain Energy Rev 69:415–428CrossRefGoogle Scholar
  72. 72.
    Leong KY, Ong HC, Amer NH, Norazrina MJ, Risby MS, Ku Ahmad KZ (2016) An overview on current application of nanofluids in solar thermal collector and its challenges. Renew Sustain Energy Rev 53:1092–1105CrossRefGoogle Scholar
  73. 73.
    Leong KY, Najwa ZA, Ku Ahmad KZ, Ong HC (2017) Investigation on stability and optical properties of titanium dioxide and aluminum oxide water-based Nanofluids. Int J Thermophys 38(5):77CrossRefGoogle Scholar
  74. 74.
    Said Z, Saidur R, Rahim NA (2014) Optical properties of metal oxides based nanofluids. Int Commun Heat Mass Transf 59:46–54CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversiti Pertahanan Nasional MalaysiaKuala LumpurMalaysia
  2. 2.Faculty of Mechanical EngineeringUniversiti Malaysia PahangPekanMalaysia

Personalised recommendations