Advertisement

Waste-Porous-Based Materials as Supports of TiO2 Photocatalytic Coatings for Environmental Applications

  • Vicente Rodríguez-GonzálezEmail author
  • Mariana Hinojosa-Reyes
Reference work entry

Abstract

Porous materials obtained through recycling glass-waste or volcanic materials such as foams and amorphous perlite granules could be used as excellent inorganic supports for catalytic coatings. These materials have good water absorption capacity that makes them good supports for catalytic and photocatalytic coatings with surface roughness. In addition to hygroscopic characteristics, their low density (approximately 0.41–0.44 g cm−3) allows floating on water (lightweight materials). These recycled materials present a chemical composition that is approximately 74% SiO2, 15% Al2O3, and 11% alkaline oxides and alkaline earth oxides that provide a negligible contribution for photocatalytic or catalytic applications. Perlite is an expanded material extensively used in aqueous photocatalytic degradations of dyes and organic contaminants and gas-phase degradation of VOCs like ethylene benzene coupled with biofilters, achieving degradation in 3 h. Waste-glass foams present activity for green tide annihilation and solar degradation of dyes using natural solar irradiation. Both systems present negligible lixiviation and good mechanical stability during photocatalytic performance. In the present work, coatings were obtained by several synthesis methods such as sonochemical deposition or acid impregnation process using nanocrystalline-doped sol-gel TiO2 or commercial TiO2. The physiochemical characterizations by HRTEM, XRD, UV-vis-DRS, and Raman or FTIR spectroscopies are discussed and correlated with environmental applications to obtain a better understanding of these novel ecomaterial systems.

The practical active systems are a realistic strategy to scale up the systems to possible industrial applications and solve the emerging environmental pollution problems of industrialized cities.

Keywords

Waste-glass-based materials Nanocatalyst Porous materials Sol-gel method Antibacterial Photocatalytic Ceramic coating Glass foam Perlite granules 

Abbreviations

4 CP

4-Chlorophenol

AC

Activated carbon

AO7

Acid orange 7

BET

Brunauer–Emmett–Teller

CTAB

Cetyl trimethylammonium bromide

CVD

Chemical vapor deposition

DCA

Dichloroacetate

DRS

Diffuse reflectance spectroscopy

EB

Ethylbenzene

EC

Elimination capacity

EDS

Energy-dispersive X-ray spectroscopy

EP

Expanded perlite

FG

Foamed glass

FTIR

Fourier transform infrared

FWG

Foamed waste glass

FWGS

Foamed waste-glass strips

GO

Graphene oxide

HRTEM

High-resolution transmission electron microscopy

LBD

Loose bulk density

Nf

Nafion

NO

Nitric oxide

POSS

Polyhedral oligomeric silsesquioxane

PVA

Polyvinyl alcohol

RhB

Rhodamine B

SEM

Scanning electron microscopy/microscope

SMX

Sulfamethoxazole

TiO2

Titanium dioxide

TMA

Tetramethylammonium

UV

Ultraviolet

UV-A

Ultraviolet radiation A

WCF

Waste ceramic foams

WG

Waste glass

XPS

X-ray photoelectron spectroscopy

XRD

X-ray diffraction

References

  1. 1.
    Qian X, Ren M, Yue D, Zhu Y, Han Y, Bian Z, Zhao Y (2017) Mesoporous TiO2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. Appl Catal B 212:1–6CrossRefGoogle Scholar
  2. 2.
    Fu G, Vary PS, Lin CT (1997) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898CrossRefGoogle Scholar
  3. 3.
    Hochmannova L, Vytrasova J (2010) Photocatalytic and antimicrobial effects of interior paints. Prog Org Coat 67:1–5CrossRefGoogle Scholar
  4. 4.
    Xie S, Ji Z, Yang Y, Hou G, Wang J (2016) Electromagnetic wave absorption enhancement of carbon black/gypsum based composites filled with expanded perlite. Compos Part B-Eng 106:10–19CrossRefGoogle Scholar
  5. 5.
    Lebullenger R, Chenu S, Rocherullé J, Merdrignac-Conanec O, Cheviré F, Tessier F, Bouzaza A, Brosillon S (2010) Glass foams for environmental applications. J Non-Cryst Solids 365:2562–2568CrossRefGoogle Scholar
  6. 6.
    Rincón A, Marangoni M, Cetin S, Bernardo E (2016) Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications. J Chem Technol Biotechnol 91:1946–1961CrossRefGoogle Scholar
  7. 7.
    Bennett JA, Wilson K, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4:3617–3637CrossRefGoogle Scholar
  8. 8.
    Hinojosa-Reyes M (2011) Estudio de un sistema híbrido de degradación de etilbenceno: oxidación avanzada UV/TiO2-In acoplada a un biofiltro (Tesis de Maestría en Ciencias). Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, MéxicoGoogle Scholar
  9. 9.
    Różycka A, Pichòr W (2016) Effect of perlite waste addition on the properties of autoclaved aerated concrete. Constr Build Mater 120:65–71CrossRefGoogle Scholar
  10. 10.
    Pichór W, Janiec A (2009) Thermal stability of expanded perlite modified by mullite. Ceram Int 35:527–530CrossRefGoogle Scholar
  11. 11.
    Angelopoulos PM, Maliachova C, Papakonstantinou K, Taxiarchou M (2016) Structural and physical characteristics of fine perlite expanded with a novel method in a vertical electric furnace. Miner Process Extr M 125:71–80CrossRefGoogle Scholar
  12. 12.
    Chinnam RK, Bernardo E, Will J, Boccaccini AR (2015) Processing of porous glass ceramics from highly crystallisable industrial wastes. Adv Appl Ceram 114:S11–S16CrossRefGoogle Scholar
  13. 13.
    Broxtermann S, Taherishargh M, Belova IV, Murch GE, Fiedler T (2017) On the compressive behavior of high porosity expanded Perlite-Metal Syntactic Foam (P-MSF). J Alloy Compd 691:690–6907CrossRefGoogle Scholar
  14. 14.
    Tsaousi GM, Douni I, Panias D (2016) Characterization of the properties of perlite geopolymer pastes. Mater Constr 66:1–8CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Doğan M, Alkan M, Türkyilmaz A, Özdemir Y (2004) Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J Hazard Mater 109:141–148CrossRefGoogle Scholar
  17. 17.
    Doğan M, Alkan M (2003) Adsorption kinetics of methyl violet onto perlite. Chemosphere 50:517–528CrossRefGoogle Scholar
  18. 18.
    Vijayakumar G, Dharmendirakumar M, Renganathan S, Sivanesan S, Baskar GP, Elango PK (2009) Removal of congo red from aqueous solutions by perlite. Clean 37:355–364Google Scholar
  19. 19.
    Roulia M, Vassiliadisb AA (2008) Sorption characterization of a cationic dye retained by clays and perlite. Micropor Mesopor Mat 116:732–740CrossRefGoogle Scholar
  20. 20.
    Mathialagan T, Viraraghavan T (2002) Adsorption of cadmium from aqueous solutions by perlite. J Hazard Mater 94:291–303CrossRefGoogle Scholar
  21. 21.
    Doğan M, Alkan M (2001) Adsorption of Copper (II) onto perlite. J Colloid Interf Sci 243:280–291CrossRefGoogle Scholar
  22. 22.
    San A, Tuzen M, Citak D, Soylak M (2007) Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. J Hazard Mater 148:387–394CrossRefGoogle Scholar
  23. 23.
    Chakir A, Bessiere J, Kacemi ELA, Marouf B (2002) A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. J Hazard Mater 95:29–46CrossRefGoogle Scholar
  24. 24.
    Talip Z, Eral M, Hiçsönmezb Ü (2009) Adsorption of thorium from aqueous solutions by perlite. J Environ Radioactiv 100:139–143CrossRefGoogle Scholar
  25. 25.
    Ghassabzadeh H, Mohadespour A, Torab-Mostaedi M, Zaheri P, Maragheh GM, Taheri H (2010) Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite. J Hazard Mater 177:950–955CrossRefGoogle Scholar
  26. 26.
    Ghassabzadeh H, Torab-Mostaedi M, Mohadespour A, Maragheh GM, Ahmadi JS, Zaheri P (2010) Characterizations of Co (II) and Pb (II) removal process from aqueous solutions using expanded perlite. Desalinaton 261:73–79CrossRefGoogle Scholar
  27. 27.
    Koumanova B, Peeva-Antova P (2002) Adsorption of p-chlorophenol from aqueous solutions on bentonite and perlite. J Hazard Mater 90:229–234CrossRefGoogle Scholar
  28. 28.
    Alkan M, Karadas M, Doğan M, Demirbaş Ö (2005) Adsorption of CTAB onto perlite samples from aqueous solutions. J Colloid Interf Sci 291:309–318CrossRefGoogle Scholar
  29. 29.
    Bastani D, Safekordi AA, Alihosseini A, Taghikhani V (2006) Study of oil sorption by expanded perlite at 298.15 K. Sep Purif Technol 52:295–300CrossRefGoogle Scholar
  30. 30.
    Swayampakula K, Boddu MV, Nadavala KS, Abburi K (2009) Competitive adsorption of Cu (II), Co (II) and Ni (II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent. J Hazard Mater 170:680–689CrossRefGoogle Scholar
  31. 31.
    Hasan S, Krishnaiah A, Ghosh KT, Viswanath SD (2006) Adsorption of divalent Cadmium (Cd(II)) from aqueous solutions onto chitosan-coated perlite beads. Ind Eng Chem Res 45:5066–5077CrossRefGoogle Scholar
  32. 32.
    Hasan S, Krishnaiah A, Ghosh KT, Viswanath SD, Boddu MV, Smith DE (2003) Adsorption of Chromium(VI) on chitosan-coated perlite. Sep Sci Technol 38:3775–3793CrossRefGoogle Scholar
  33. 33.
    Kumar NS, Suguna M, Subbaiah VM, Reddy SA, Kumar PN, Krishnaiah A (2010) Adsorption of phenolic compounds from aqueous solutions onto chitosan-coated perlite beads as biosorbent. Ind Eng Chem Res 49:9238–9247CrossRefGoogle Scholar
  34. 34.
    Vijaya Y, Subbaiah VM, Reddy SA, Krishnaiah A (2010) Equilibrium and kinetic studies of fluoride adsorption by chitosan coated perlite. Desalin Water Treat 20:272–280CrossRefGoogle Scholar
  35. 35.
    Mostafa GM, Chen Y, Jean J, Liu C, Lee Y (2011) Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite. J Hazard Mater 187:89–95CrossRefGoogle Scholar
  36. 36.
    Andrade-Martínez J, Ortega-Zarsoza G, Gómez-Cortés A, Rodríguez-González V (2015) N2O catalytic reduction over different porous SiO2 materials functionalized with copper. Powder Technol 274:305–312CrossRefGoogle Scholar
  37. 37.
    Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N (2007) Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Appl Catal B 74:53–62CrossRefGoogle Scholar
  38. 38.
    Faramarzpour M, Vossoughi M, Borghei M (2009) Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor. Chem Eng J 146:79–85CrossRefGoogle Scholar
  39. 39.
    Habibi MH, Zendehdel M (2011) Synthesis and characterization of titania nanoparticles on the surface of microporous perlite using sol-gel method: influence of titania precursor on characteristics. J Inorg Organomet Polym Mater 21:634–639CrossRefGoogle Scholar
  40. 40.
    Dlugosz M, Was J, Szczubialka K, Nowakowska M (2014) TiO2-coated EP as a floating photocatalysis for water purification. J Mater Chem A 19:6931–6938CrossRefGoogle Scholar
  41. 41.
    Długosz M, Żmudzki P, Kwiecień A, Szczubiałka A, Krzek J, Nowakowska M (2015) Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst. J Hazard Mater 298:146–153CrossRefGoogle Scholar
  42. 42.
    Cherrak R, Hadjel M, Benderdouche N, Bellayer S, Traisnel M (2016) Treatment of recalcitrant organic pollutants in water by heterogeneous catalysis using a mixed material (TiO2-diatomite of algeria). Desalin Water Treat 57:17139–17148Google Scholar
  43. 43.
    Na Y, Song S, Park Y, Korean J (2005) Photocatalytic decolorization of rhodamine B by immobilized TiO2/UV in a fluidized-bed reactor. Korean J Chem Eng 22:196–200CrossRefGoogle Scholar
  44. 44.
    Khani A, Sohrabi MR (2013) Simultaneous synthesis-immobilization of nano ZnO on perlite for photocatalytic degradation of an azo dye in semi batch packed bed photoreactor. Pol J Chem Technol 14:69–76CrossRefGoogle Scholar
  45. 45.
    Hinojosa RM, Arriaga S, Diaz TLA, Rodríguez GV (2013) Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2. Chem Eng J 224:106–113CrossRefGoogle Scholar
  46. 46.
    Hinojosa RM, Arriaga S, Rodriguez GV (2012) Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2–In and a biofiltration process. J Hazard Mater 209-210:365–371CrossRefGoogle Scholar
  47. 47.
    Saucedo LSO, Arriaga S (2013) Photocatalytic degradation of hexane vapors in batch and continuous systems using impregnated ZnO nanoparticles. Chem Eng J 218:358–367CrossRefGoogle Scholar
  48. 48.
    Blaskov V, Stamolovo I, Georgiev V, Batakliev T, Eliyas A, Shipochka M (2015) Synthesis and catalytic activity of silver-coated perlite in the reaction of ozone decomposition. Ozone-Sci Eng 37:252–256CrossRefGoogle Scholar
  49. 49.
    Erli HJ, Rüger M, Ragoß C, Jahnen-Dechent W, Hollander AD, Paae O, Von Walter M (2006) The effect of surface modification of a porous TiO2/perlite composite on the ingrowth of bone tissue in vivo. Biomaterials 27:1270–1276CrossRefGoogle Scholar
  50. 50.
    Von Walter M, Herren C, Gensior TJ, Steffens MCG, Hermanns-Sachweh B, Jahnen-Dechent W, Rüger M, Erli JH (2008) Biomimetic modification of the TiO2/glass composite Ecopore with heparinized collagen and the osteoinductive factor BMP-2. Acta Biomater 4:997–1004CrossRefGoogle Scholar
  51. 51.
    Lee WS, Obregón AS, Rodríguez GV (2011) Photocatalytic coatings of silver–TiO2 nanocomposites on foamed waste-glass prepared by sonochemical process. J Photochem Photobiol A 221:71–76CrossRefGoogle Scholar
  52. 52.
    Song JJ, Cho SH, Lee SW, Kim TH, Hayashi Y (2007) Removing algae with Pt-doped TiO2 coating on foamed glass. Mater Sci Forum 544-545:135–138CrossRefGoogle Scholar
  53. 53.
    Song JJ, Cho HS, Lee WS, Chen H (2008) Removing algae with CoO2-doped TiO2 coatings on foamed glass. J Ceram Process Res 9:486–489Google Scholar
  54. 54.
    Obregón AS, Rodríguez GV, Zaldívar CAA, Lee WS (2011) Sonochemical deposition of silver–TiO2 nanocomposites onto foamed waste-glass: evaluation of Eosin Y decomposition under sunlight irradiation. Catal Today 166:166–171CrossRefGoogle Scholar
  55. 55.
    Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705CrossRefGoogle Scholar
  56. 56.
    Li Y, Li X, Li J, Yin J (2006) Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res 40:1119–1126CrossRefGoogle Scholar
  57. 57.
    Fernández A, Lassaletta G, Jiménez VM, Justo A, González-Elipe AR, Hermann J-M, Tahiri H, Ait-Ichou Y (1995) Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl Catal B 7:49–63CrossRefGoogle Scholar
  58. 58.
    Yu JC, Ho W, Lin J, Yip H, Wong PK (2003) Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Envrion Sci Technol 37:2296–2301CrossRefGoogle Scholar
  59. 59.
    Teekateerawej S, Nishino J, Nosaka Y (2005) Photocatalytic microreactor study using TiO2-coated porous ceramics. J Appl Electrochem 35:693–697CrossRefGoogle Scholar
  60. 60.
    Yaghoubi H, Taghavinia N, Alamdari EK (2010) Self cleaning TiO2 coating on polycarbonate: surface treatment, photocatalytic and nanomechanical properties. Surf Coat Technol 204:1562–1568CrossRefGoogle Scholar
  61. 61.
    Peill NL, Hoffmann MR (1995) Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol. Environ Sci Technol Lett 29:2974–2981CrossRefGoogle Scholar
  62. 62.
    Hassan MM, Dylla H, Mohammad LN, Rupnow T (2010) Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Constr Build Mat 24:1456–1461CrossRefGoogle Scholar
  63. 63.
    Lee JA, Krogman KC, Ma M, Hill RM, Hammond PT, Rutledge GC (2009) Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers. Adv Mater 21:1252–1256CrossRefGoogle Scholar
  64. 64.
    Park H, Choi W (2005) Photocatalytic reactivities of nafion-coated TiO2 for the degradation of charged organic compounds under UV or visible light. J Phys Chem B 109:11667–11674CrossRefGoogle Scholar
  65. 65.
    Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, Kubota Y, Fujishima A (2000) Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: a preclinical work. J Biomed Mater Res A 58:97–101CrossRefGoogle Scholar
  66. 66.
    Tennakone K, Tilakaratne CTK, Kottegoda IRM (1995) Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. J Photochem Photobiol A 87:177–179CrossRefGoogle Scholar
  67. 67.
    Kim H, Lee S, Han Y, Park J (2006) Preparation of dip-coated TiO2 photocatalyst on ceramic foam pellets. J Mater Sci 41:6150–6153CrossRefGoogle Scholar
  68. 68.
    Shibata T, Hamada N, Kimoto K, Sawada T, Sawada T, Kumada H, Umemoto T, Toyoda M (2007) Antifungal effect of acrylic resin containing apatite-coated TiO2 photocatalyst. Dent Mater Sci 26:437–444CrossRefGoogle Scholar
  69. 69.
    Agarwal S, Wendorff JH, Greiner A (2010) Chemistry on electrospun polymeric nanofibers: merely routine chemistry or a real challenge. Macromol Rapid Commun 31:1317–1331CrossRefGoogle Scholar
  70. 70.
    Jafarzadeh NK, Sarifnia S, Hosseini SN, Rahimpour F (2011) Statistical optimization of process conditions for photocatalytic degradation of phenol with immobilization of nano TiO2 on perlite granules. Korean J Chem Eng 28:531–538CrossRefGoogle Scholar
  71. 71.
    Hasan S, Ghosh TK, Prelas MA, Viswanath DS, Boddu VM (2007) Adsorption of uranium on a novel bioadsorbent-chitosan-coated perlite. Nuclear Technol 159:59–71CrossRefGoogle Scholar
  72. 72.
    Shavisi Y, Sharifnia S, Hosseini SN, Khadivi MA (2013) Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. J Ind Eng Chem 20:278–283CrossRefGoogle Scholar
  73. 73.
    Joolaei H, Vossoughi M, Abadi ARM, Heravi A (2017) Removal of humic acid from aqueous solution using photocatalytic reaction on perlite granules covered by nano TiO2 particles. J Mol Liq 242:357–363CrossRefGoogle Scholar
  74. 74.
  75. 75.
    Hejazi P, Borenberg F, Isik G, Rupar-Gadd K, Strandmark G, Shojaosadati SA, Welander U (2010) Treatment of α-pinenes-contaminated air using silicone oil-coated perlite biofilter. Environ Prog Sustain Energy 29:313–318CrossRefGoogle Scholar
  76. 76.
    Verbinnen B, Block C, Vandecasteele C (2016) Adsorption of oxyanions from industrial wastewater using perlite-supported magnetite. Water Environ Res 88:408–414CrossRefGoogle Scholar
  77. 77.
  78. 78.
    Wang X, Wang W, Wang X, Zhang J, Gu Z, Zhou L, Zhao J (2015) Enhanced visible light photocatalytic activity of a floating photocatalyst based on B-N-codoped TiO2 grafted on expanded perlite. RSC Adv 5:41385–41392CrossRefGoogle Scholar
  79. 79.
    Wang X, Wang W, Wang X, Zhang J, Zhao J, Gu Z, Zhou L (2015) Synthesis, structural characterization and evaluation of floating B-N codoped TiO2/expanded perlite composites with enhanced visible light photoactivity. Appl Surf Sci 349:264–271CrossRefGoogle Scholar
  80. 80.
    Domínguez MI, Sánchez M, Centeno MA, Montes M, Odriozola JA (2006) CO oxidation over gold-supported catalysts-coated ceramic foams prepared from stainless steel wastes. Appl Catal A 302:96–103CrossRefGoogle Scholar
  81. 81.
    Domínguez MI, Sánchez M, Centeno MA, Montes M, Odriozola JA (2007) 2-propanol oxidation over gold supported catalysts coated ceramic foams prepared from stainless steel wastes. J Mol Catal A 277:145–154CrossRefGoogle Scholar
  82. 82.
    Xu Q, Zeng J, Li X, Xu J, Liu X (2016) 3D nano-macroporous structured TiO2-foam glass as an efficient photocatalyst for organic pollutant treatment. RSC Adv 6:51888–51893CrossRefGoogle Scholar
  83. 83.
    Ishikawa S, Kobzi B, Sunakawa K, Nemeth S, Lengyel A, Kuzmann E, Homonnay Z, Nishida T, Kubuki S (2017) Visible-light activated photocatalytic effect of glass and glass ceramic prepared by recycling waste slag with hematite. Pure Appl Chem 89(4):535–544.  https://doi.org/10.1515/pac-2016-1018CrossRefGoogle Scholar
  84. 84.
    Karches M, Morstein M, von Rohr PR, Pozzo RL, Giombi JL, Baltanás MA (2002) Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catal Today 72:267–279CrossRefGoogle Scholar
  85. 85.
    Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351:260–263CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vicente Rodríguez-González
    • 1
    Email author
  • Mariana Hinojosa-Reyes
    • 2
  1. 1.División de Materiales AvanzadosIPICYT, Instituto Potosino de Investigación Científica y TecnológicaSan Luis PotosíMexico
  2. 2.Facultad de CienciasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations