Biomolecule Silver Nanoparticle-Based Materials for Biomedical Applications

  • Manuel AhumadaEmail author
  • Erik J. Suuronen
  • Emilio I. Alarcon
Reference work entry


The biomedical properties of nanoparticulated silver have been widely studied in the last decade; however, still there are concerns regarding its long-term toxicity. Recent developments in nanoparticle fabrication and surface manipulation, using different biomolecules, have allowed the preparation of nontoxic nanosilver. Thus, nanosilver has been safely incorporated in a variety of regenerative templates for engineering of a number of tissues like the cornea, skin, and heart. In this chapter, some selected friendly synthetic routes for the preparation of biomolecule-capped silver nanoparticles will be discussed and presented. The main goal is to present a rationale for selecting a synthetic route for nanosilver that minimizes/avoids toxic side effects for biomaterial development.


Uncategorized References

  1. 1.
    Alexander JW (2009) History of the medical use of silver. Surg Infect 10(3):289–292CrossRefGoogle Scholar
  2. 2.
    Muffly TM, Tizzano AP, Walters MD (2011) The history and evolution of sutures in pelvic surgery. J Roy Soc Med 104(3):107–112CrossRefGoogle Scholar
  3. 3.
    Schneider G (1984) Silver nitrate prophylaxis. Can Med Assoc J 131(3):193–196Google Scholar
  4. 4.
    Panchbhai A (2015) Wilhelm Conrad Röntgen and the discovery of X-rays: revisited after centennial. J Indian Acad Oral Med Radiol 27(1):90–95CrossRefGoogle Scholar
  5. 5.
    Prescott RJ, Wells S (1994) Systemic argyria. J Clin Pathol 47(6):556–557CrossRefGoogle Scholar
  6. 6.
    Folgori L et al (2014) Epidemiology and clinical outcomes of multidrug-resistant, gram-negative bloodstream infections in a European tertiary pediatric hospital during a 12-month period. Pediatr Infect Dis J 33(9):929–932CrossRefGoogle Scholar
  7. 7.
    Hirsch EB, Tam VH (2010) Impact of multidrug-resistant Pseudomonas Aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 10(4):441–451CrossRefGoogle Scholar
  8. 8.
    Linares L et al (2007) Epidemiology and outcomes of multiple antibiotic-resistant bacterial infection in renal transplantation. Transplant Proc 39(7):2222–2224CrossRefGoogle Scholar
  9. 9.
    Nseir S et al (2006) Multiple-drug-resistant bacteria in patients with severe acute exacerbation of chronic obstructive pulmonary disease: prevalence, risk factors, and outcome. Crit Care Med 34(12):2959–2966CrossRefGoogle Scholar
  10. 10.
    McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of Nanosilver. J Food Drug Anal 22(1):116–127CrossRefGoogle Scholar
  11. 11.
    McLaughlin S et al (2016) Sprayable peptide-modified silver nanoparticles as a barrier against bacterial colonization. Nanoscale 8(46):19200–19203CrossRefGoogle Scholar
  12. 12.
    Allison S et al (2017) Electroconductive nanoengineered biomimetic hybrid fibers for cardiac tissue engineering. J Mater Chem B 5(13):2402–2406CrossRefGoogle Scholar
  13. 13.
    Stamplecoskie K (2015) Silver nanoparticles: from bulk material to colloidal nanoparticles. In: Alarcon EI, Griffith M, Udekwu KI (eds) Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices. Springer International Publishing, Cham, pp 1–12Google Scholar
  14. 14.
    Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3):339–354CrossRefGoogle Scholar
  15. 15.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83CrossRefGoogle Scholar
  16. 16.
    Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol 3(1):95–101CrossRefGoogle Scholar
  17. 17.
    Griffith M et al (2015) Anti-microbiological and anti-infective activities of silver. In: Alarcon EI, Griffith M, Udekwu KI (eds) Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices. Springer International Publishing, Cham, pp 127–146CrossRefGoogle Scholar
  18. 18.
    Pacioni NL et al (2015) Synthetic routes for the preparation of silver nanoparticles. In: Alarcon EI, Griffith M, Udekwu KI (eds) Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices. Springer International Publishing, Cham, pp 13–46CrossRefGoogle Scholar
  19. 19.
    Iqbal P, Preece JA, Mendes PM (2012) Nanotechnology: the “top-down” and “bottom-up” approaches. In: Supramolecular chemistry. John Wiley & Sons, Ltd, Hoboken, New Jersey, USAGoogle Scholar
  20. 20.
    Cushing BL, Kolesnichenko VL, O'Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946CrossRefGoogle Scholar
  21. 21.
    Lingane JJ, Larson WD (1936) The standard electrode potential of silver. J Am Chem Soc 58(12):2647–2648CrossRefGoogle Scholar
  22. 22.
    Iravani S et al (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406Google Scholar
  23. 23.
    Kruis FE, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 69:329–334CrossRefGoogle Scholar
  24. 24.
    Magnusson MH et al (1999) Gold nanoparticles: production, reshaping, and thermal charging. J Nanopart Res 1(2):243–251CrossRefGoogle Scholar
  25. 25.
    Jung JH et al (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci 37(12):1662–1670MathSciNetCrossRefGoogle Scholar
  26. 26.
    Dolgaev SI et al (2002) Nanoparticles produced by laser ablation of solids in liquid environment. Appl Surf Sci 186(1):546–551CrossRefGoogle Scholar
  27. 27.
    Mafuné F et al (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105(22):5114–5120CrossRefGoogle Scholar
  28. 28.
    Tsuji T et al (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202(1):80–85CrossRefGoogle Scholar
  29. 29.
    Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C 10(1):33–56CrossRefGoogle Scholar
  30. 30.
    Rafique M et al (2016) A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed B:1–20Google Scholar
  31. 31.
    Rónavári A et al (2017) Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study. Int J Nanomedicine 12:871–883CrossRefGoogle Scholar
  32. 32.
    Jadhav K et al (2016) Green and ecofriendly synthesis of silver nanoparticles: characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J Photochem Photobiol B 155:109–115CrossRefGoogle Scholar
  33. 33.
    Zhang X-F et al (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534CrossRefGoogle Scholar
  34. 34.
    Alarcon EI et al (2016) Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale 8(12):6484–6489CrossRefGoogle Scholar
  35. 35.
    Ahumada M et al (2016) Spherical silver nanoparticles in the detection of thermally denatured collagens. Anal Bioanal Chem 408(8):1993–1996CrossRefGoogle Scholar
  36. 36.
    Mikhlin YL et al (2014) Oxidation of Ag nanoparticles in aqueous media: effect of particle size and capping. Appl Surf Sci 297:75–83CrossRefGoogle Scholar
  37. 37.
    Toh HS, Jurkschat K, Compton RG (2015) The influence of the capping agent on the oxidation of silver nanoparticles: Nano-impacts versus stripping voltammetry. Chem Eur J 21(7):2998–3004CrossRefGoogle Scholar
  38. 38.
    Ajitha B et al (2016) Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Adv 6(42):36171–36179CrossRefGoogle Scholar
  39. 39.
    Ahumada M et al (2017) Association models for binding of molecules to nanostructures. Analyst 142(12):2067–2089CrossRefGoogle Scholar
  40. 40.
    Thordarson P (2011) Determining association constants from titration experiments in supramolecular chemistry. Chem Soc Rev 40(3):1305–1323CrossRefGoogle Scholar
  41. 41.
    Monopoli MP et al (2011) Physical−chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534CrossRefGoogle Scholar
  42. 42.
    Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47CrossRefGoogle Scholar
  43. 43.
    Rahman M et al (2013) Nanoparticle and protein corona. In: Protein-nanoparticle interactions: the bio-nano interface. Springer, Heidelberg, pp 21–44CrossRefGoogle Scholar
  44. 44.
    Pavlin M, Bregar VB (2012) Stability of nanoparticle suspensions in different biologically relevant media. Dig J Nanomater Biostruct 4(7):1389–1400Google Scholar
  45. 45.
    Chambers BA et al (2014) Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ Sci Technol 48(1):761–769CrossRefGoogle Scholar
  46. 46.
    Zhou W et al (2016) Effects of pH, electrolyte, humic acid, and light exposure on the long-term fate of silver nanoparticles. Environ Sci Technol 50(22):12214–12224CrossRefGoogle Scholar
  47. 47.
    Niu Z, Li Y (2014) Removal and utilization of capping agents in Nanocatalysis. Chem Mater 26(1):72–83CrossRefGoogle Scholar
  48. 48.
    Poblete H et al (2016) New insights into peptide-silver nanoparticle interaction: deciphering the role of cysteine and lysine in the peptide sequence. Langmuir 32(1):265–273CrossRefGoogle Scholar
  49. 49.
    Vignoni M et al (2014) LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control. Nanoscale 6(11):5725–5728CrossRefGoogle Scholar
  50. 50.
    Palafox-Hernandez JP et al (2014) Comparative study of materials-binding peptide interactions with gold and silver surfaces and nanostructures: a thermodynamic basis for biological selectivity of inorganic materials. Chem Mater 26(17):4960–4969CrossRefGoogle Scholar
  51. 51.
    Hughes ZE, Wright LB, Walsh TR (2013) Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with gold. Langmuir 29(43):13217–13229CrossRefGoogle Scholar
  52. 52.
    Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116(5):2775–2825CrossRefGoogle Scholar
  53. 53.
    Watanabe S, Jorgensen EM (2012) Visualizing proteins in electron micrographs at nanometer resolution. Methods Cell Biol 111. Scholar
  54. 54.
    Alarcon E et al (2013) Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. J Nanopart Res 15(1):1–14CrossRefGoogle Scholar
  55. 55.
    Ramos R et al (2011) Wound healing activity of the human antimicrobial peptide LL37. Peptides 32(7):1469–1476CrossRefGoogle Scholar
  56. 56.
    Tiwari S et al (2014) Vitamin D deficiency is associated with inflammatory cytokine concentrations in patients with diabetic foot infection. Brit J Nutr 112(12):1938–1943CrossRefGoogle Scholar
  57. 57.
    Karakas A et al (2014) Predictive value of soluble CD14, Interleukin-6 and Procalcitonin for lower extremity amputation in people with diabetes with foot ulcers: a pilot study. Pak J Med Sci 30(3):578–582Google Scholar
  58. 58.
    Alarcon EI et al (2012) The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 33(19):4947–4956CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manuel Ahumada
    • 1
    • 2
    Email author
  • Erik J. Suuronen
    • 3
  • Emilio I. Alarcon
    • 3
    • 4
  1. 1.Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac SurgeryUniversity of Ottawa Heart InstituteOttawaCanada
  2. 2.Centro de Nanotecnologia Aplicada, Facultad de Ciencias, Universidad MayorSantiagoChile
  3. 3.Division of Cardiac Surgery ResearchUniversity of Ottawa Heart InstituteOttawaCanada
  4. 4.Department of Biochemistry, Microbiology, and Immunology, Faculty of MedicineUniversity of OttawaOttawaCanada

Personalised recommendations