Advertisement

Silver Nanoparticles: Synthesis and Applications

  • Mohd YusufEmail author
Reference work entry

Abstract

Nanotechnology involves the production, manipulation, and use of materials ranging in size from less than a micron to that of individual atoms, is an emerging field of modern science, and utilizes nanoscaled systems. Nanoparticles (NPs) are being viewed as fundamental building blocks of nanotechnology. Although nanomaterials may be synthesized using chemical approaches, it is now possible to include the use of biological systems such as bacteria, fungi, and plants. Currently, silver nanoparticles have shown great importance due to its large surface ratio and unique properties with myriad activities applicable in a number of applied sectors including microbial resistant applications (antibacterial/antifungal/anticancer/antiviral), water treatment, protective dressings, catalysis, and optical devices. This chapter encompasses the fabrication methods and dispersed applications of silver nanoparticles.

References

  1. 1.
    Gleiter H (2000) Nanostructured materials, basic concepts and microstructure. Acta Mater 48(1):1–12CrossRefGoogle Scholar
  2. 2.
    Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269CrossRefGoogle Scholar
  3. 3.
    Braydich-Stolle L, Hussain S, Schlager J, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germ line stem cells. Toxicol Sci 88:412–419CrossRefGoogle Scholar
  4. 4.
    Hornyak GL, Dutta J, Tibbals HF, Rao A (2008) Introduction to nanoscience. CRC Press, Taylor and Francis LLC, New YorkCrossRefGoogle Scholar
  5. 5.
    Konrad A, Herr U, Tidecks R, Samwer F (2001) Luminescence of bulk and nanocrystalline cubic yttria. J Appl Phys 90(7):3516–3523CrossRefGoogle Scholar
  6. 6.
    Liang H, Li Z, Wang W, Wu Y, Xu H (2009) Highly surface-roughened “Flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman Scattering. Adv Mater 21(45):4614–4618CrossRefGoogle Scholar
  7. 7.
    Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111(6):3669–3712CrossRefGoogle Scholar
  8. 8.
    Jia H, Zeng J, Song W, An J, Zhao B (2006) Preparation of silver nanoparticles by photoreduction for surface-enhanced Raman scattering. Thin Solid Films 2:281–287CrossRefGoogle Scholar
  9. 9.
    Tsuji T, Okazaki Y, Tsuji M (2008) Photo-induced morphological conversions of silver nanoparticles prepared using laser ablation in water-enhanced morphological conversions using halogen etching. J Photochem Photobiol- A 194:247–253CrossRefGoogle Scholar
  10. 10.
    Kshirsagar P, Sangaru SS, Malvindi MA, Martiradonna L, Cingolani R, Pomp PP (2011) Synthesis of highly stable silver nanoparticles by photoreduction and their size fractionation by phase transfer method. Colloids Surf A Physicochem Eng Asp 392:264–270CrossRefGoogle Scholar
  11. 11.
    Zaarour M, El-Roz M, Dong B, Retoux R, Aad R, Cardin J, Dufour C, Gourbilleau F, Gilson JP, Mintova S (2014) Photochemical preparation of silver nanoparticles supported on zeolite crystals. Langmuir 30(21):6250–6256CrossRefGoogle Scholar
  12. 12.
    Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116(16):7401–7402CrossRefGoogle Scholar
  13. 13.
    Rodriguez-Sanchez L, Blanco MC, Lopez-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104(41):9683–9688CrossRefGoogle Scholar
  14. 14.
    Nasretdinova GR, Fazleeva RR, Osin YN, Gubaidullin AT, Yanilkin VV (2017) Methylviologen-mediated electrochemical synthesis of silver nanoparticles via the reduction of AgCl nanospheres stabilized by cetyltrimethylammonium chloride. Rus J Electrochemistry 1(53):25–38CrossRefGoogle Scholar
  15. 15.
    Jokanović V, Spasić AM, Uskoković D (2004) Designing of nanostructured hollow TiO2 spheres obtained by ultrasonic spray pyrolysis. J Colloid Interface Sci 278(2):342–352CrossRefGoogle Scholar
  16. 16.
    Pingali KC, Rockstraw DA, Deng S (2005) Silver nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate. Aerosol Sci Technol 39(10):1010–1014CrossRefGoogle Scholar
  17. 17.
    Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad BL, Shouche YS, Ogale S, Sastry M (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24(11):5787–5794CrossRefGoogle Scholar
  18. 18.
    Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28CrossRefGoogle Scholar
  19. 19.
    Kim JS, Kuk E, KN Y, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101CrossRefGoogle Scholar
  20. 20.
    He W, Liu X, Kienzle A, Müller WE, Feng Q (2016) In vitro uptake of silver nanoparticles and their toxicity in human mesenchymal stem cells derived from bone marrow. J Nanosci Nanotechnol 16(1):219–228CrossRefGoogle Scholar
  21. 21.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182CrossRefGoogle Scholar
  22. 22.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2356CrossRefGoogle Scholar
  23. 23.
    Sonker AS, Richa JP, Rajneesh VK (2017) Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2. Can J Biotechnol 1(1):26–37CrossRefGoogle Scholar
  24. 24.
    Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microb Biotechnol 18(8):1482–1484Google Scholar
  25. 25.
    Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, Hamal P, Zbořil R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31):6333–6340CrossRefGoogle Scholar
  26. 26.
    Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85(7):743–750CrossRefGoogle Scholar
  27. 27.
    Lin J, Huang Z, Wu H, Zhou W, Jin P, Wei P, Zhang Y, Zheng F, Zhang J, Xu J, Hu Y (2006) Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy 10(11):2006–2020CrossRefGoogle Scholar
  28. 28.
    Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3(1):6CrossRefGoogle Scholar
  29. 29.
    Yoon KY, Byeon JH, Park CW, Hwang J (2008) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 42(4):1251–1255CrossRefGoogle Scholar
  30. 30.
    Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43(3):715–723CrossRefGoogle Scholar
  31. 31.
    Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602CrossRefGoogle Scholar
  32. 32.
    Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45(5):1992–1998CrossRefGoogle Scholar
  33. 33.
    Ahamed M, AlSalhi MS, Siddiqui MK (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411(23):1841–1848CrossRefGoogle Scholar
  34. 34.
    Xing ZC, Chae WP, Baek JY, Choi MJ, Jung Y, Kang IK (2010) In vitro assessment of antibacterial activity and cytocompatibility of silver-containing PHBV nanofibrous scaffolds for tissue engineering. Biomacromolecules 11(5):1248–1253CrossRefGoogle Scholar
  35. 35.
    Philippot K, Serp P (2012) Concepts in nanocatalysis. In: Serp P, Philippot K (eds) Nanomaterials in catalysis, 1st edn. Wiley-VCH, Weinheim, pp 1–54Google Scholar
  36. 36.
    Jiang ZJ, Liu CY, Sun LW (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109(5):1730–1735CrossRefGoogle Scholar
  37. 37.
    Bastús NG, Merkoçi F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26(9):2836–2846CrossRefGoogle Scholar
  38. 38.
    Dong XY, Gao ZW, Yang KF, Zhang WQ, LW X (2015) Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal Sci Technol 5(5):2554–2574CrossRefGoogle Scholar
  39. 39.
    Choi BH, Lee HH, Jin S, Chun S, Kim SH (2007) Characterization of the optical properties of silver nanoparticle films. Nanotechnology 18(7):075706CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, YMD CollegeMaharshi Dayanand UniversityNuhIndia

Personalised recommendations