Advertisement

Thin Film Hydrogen Storages

  • Aleksey GuglyaEmail author
  • Elena Lyubchenko
Reference work entry

Abstract

This chapter systematizes the results of studies of the regularities of hydrogen absorption up to the concentrations of ~7 wt.% by thin films of magnesium, niobium, and vanadium. Distinctive features of the hydrides formation in single- and multilayer films have been demonstrated. It has been shown how such properties as electrical resistivity and optical transparency of thin films can correlate with the hydride formation process. The possibility of improving the kinetic and thermodynamic characteristics of thin films by forming a nanocrystalline structure and introducing catalysts has been analyzed. It has been shown that an increase in the gravimetric capacity of vanadium can be achieved due to nanoporous thin-film structures creating.

References

  1. 1.
    Kunstler JH (2009) The long emergency: surviving the end of oil, climate change, and other converging catastrophes of the twenty-first century, 2nd edn. Grove Press, New-YorkGoogle Scholar
  2. 2.
    Technical system targets: onboard hydrogen storage for light-duty fuel cell vehicles. https://energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_table_onboard_h2_storage_systems_doe_targets_ldv_1.pdf
  3. 3.
    Vishnyakov V (2006) Proton exchange membrane fuel cells. Vacuum 80(10):1053–1065.  https://doi.org/10.1016/j.vacuum.2006.03.029CrossRefGoogle Scholar
  4. 4.
    Züttel A, Sudan P, Mauron P et al (2002) Hydrogen storage in carbon nanostructures. Int J Hydrog Energy 27(2):203–212.  https://doi.org/10.1016/S0360-3199(01)00108-2CrossRefGoogle Scholar
  5. 5.
    Jain I, Jain P, Jain A (2010) A novel hydrogen storage materials: a review of lightweight complex hydrides. J Alloys Compd 503(2):303–339.  https://doi.org/10.1016/j.jallcom.2010.04.250CrossRefGoogle Scholar
  6. 6.
    Song M, Ivanov E, Darriet B et al (1985) Hydriding properties of a mechanically alloyed mixture with a composition Mg2Ni. Int J Hydrog Energy 10(3):169–178.  https://doi.org/10.1016/0360-3199(85)90024-2CrossRefGoogle Scholar
  7. 7.
    Harris J, Curtin WA, Schultz L (1988) Hydrogen storage characteristics of mechanically alloyed amorphous metals. J Mater Res 3(5):872–883.  https://doi.org/10.1557/JMR.1988.0872CrossRefGoogle Scholar
  8. 8.
    Aoki K, Memezava A, Masumoto T (1993) Atmosphere effects on the amorphization reaction in NiZr by ball milling. J Mater Res 8(2):307–313.  https://doi.org/10.1557/JMR.1993.0307CrossRefGoogle Scholar
  9. 9.
    Doppiu S, Schultz L, Gutfleisch O (2007) In-situ pressure and temperature monitoring during the conversion of Mg into MgH2 by high-pressure reactive milling. J Alloys Compd 427:204–208.  https://doi.org/10.1016/j.jallcom.2006.02.045CrossRefGoogle Scholar
  10. 10.
    Jain I, Vijay K, Malhotra L et al (1988) Hydrogen storage in thin film metal hydride – a review. Int J Hydrog Energy 13(1):15–23.  https://doi.org/10.1016/0360-3199(88)90005-5CrossRefGoogle Scholar
  11. 11.
    Reilly J, Johnson J, Reidinger F et al (1980) Lattice expansion as a measure of surface segregation and the solubility of hydrogen in α-FeTiHx. J Less-Common Met 73(1):175–182.  https://doi.org/10.1016/0022-5088(80)90358-6CrossRefGoogle Scholar
  12. 12.
    Malinovski M (1983) Some future directions for metal hydride surface studies: electrons as probes of hydrogen. J Less-Common Met 89(1):1–18.  https://doi.org/10.1016/0022-5088(83)90243-6CrossRefGoogle Scholar
  13. 13.
    Eatons E, Olson C, Scheinberg Y et al (1981) Mechanically stable hydride composites designed for rapid cycling. Int J Hydrog Energy 6(6):609–613.  https://doi.org/10.1016/0360-3199(81)90026-4CrossRefGoogle Scholar
  14. 14.
    Bryk V, Guglya A, Litvinenko M (2011) Mechanisms of nanoporous VN-Ar/He structure formation under high-energy ion bombardment. Radiat Eff Def Solids 166(4):282–287.  https://doi.org/10.1080/10420150.2010.538928CrossRefGoogle Scholar
  15. 15.
    Goncharov A, Guglya A, Melnikova E (2012) On the feasibility of developing hydrogen storages capable of adsorption hydrogen both in its molecular and atomic states. Int J Hydrog Energy 37(23):18061–18073.  https://doi.org/10.1016/j.ijhydene.2012.08.142CrossRefGoogle Scholar
  16. 16.
    Zaluska A, Zaluski L, Strom-Olsen J (1999) Nanocrystalline magnesium for hydrogen storage. J Alloys Compd 288(1–2):217–225.  https://doi.org/10.1016/S0925-8388(99)00073-0CrossRefGoogle Scholar
  17. 17.
    Schlapbach L, Shaltiel D, Oelhafen P (1979) Catalytic effect in the hydrogenation of Mg and Mg compounds: Surface analysis of Mg-Mg2Ni and Mg2Ni. Mater Res Bull 14(9):1235–1246.  https://doi.org/10.1016/0025-5408(79)90220-4CrossRefGoogle Scholar
  18. 18.
    Kroser A, Kasemo B (1989) Equilibrium hydrogen uptake and associated kinetics for the Mg-H2 system at low pressures. J Phys-Condens Matter 1(8):1533–1538.  https://doi.org/10.1088/0953-8984/1/8/017CrossRefGoogle Scholar
  19. 19.
    Dehouche Z, Klassen T, Oelerich W et al (2002) Cycling and thermal stability of nanostructured MgH2–Cr2O3 composite for hydrogen storage. J Alloys Compd 347(1–2):319–323.  https://doi.org/10.1016/S0925-8388(02)00784-3CrossRefGoogle Scholar
  20. 20.
    Zaluski L, Zaluska A, Ström-Olsen JO (1995) Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J Alloys Compd 217(2):245–249.  https://doi.org/10.1016/0925-8388(94)01348-9CrossRefGoogle Scholar
  21. 21.
    Qu J, Sun B, Yang R et al (2010) Hydrogen absorption kinetics of Mg thin films under mild conditions. Scripta Mater 62(5):317–320.  https://doi.org/10.1016/j.scriptamat.2009.11.033CrossRefGoogle Scholar
  22. 22.
    Yoshimura K (2012) Anomalous structure of palladium-capped magnesium thin films. Metals 2(3):253–257.  https://doi.org/10.3390/met2030253CrossRefGoogle Scholar
  23. 23.
    Ares J, Leardini F, Díaz-Chao P et al (2010) Hydrogen desorption in nanocrystalline MgH2 thin films at room temperature. J Alloys Compd 495(2):650–654.  https://doi.org/10.1016/j.jallcom.2009.10.110CrossRefGoogle Scholar
  24. 24.
    Eberle U, Felderhoff M, Schüth F (2009) Chemical and physical solutions for hydrogen storage. Angew Chem Int Edit 48(36):6608–6630.  https://doi.org/10.1002/anie.200806293CrossRefGoogle Scholar
  25. 25.
    Moriwaki T, Akahama Y, Kawamura H et al (2006) Structural phase transition of rutile-type MgH2 at high pressures. J Phys Soc Jpn 75(7):074603.  https://doi.org/10.1143/JPSJ.75.074603CrossRefGoogle Scholar
  26. 26.
    Vajeeston P, Ravindran P, Kjekshus A et al (2002) Pressure-induced structural transitions in MgH2. Phys Rev Lett 89(17):175506.  https://doi.org/10.1103/PhysRevLett.89.175506CrossRefGoogle Scholar
  27. 27.
    Hum B, Junkaew A, Arroyave R et al (2013) Hydrogen sorption in orthorhombic Mg hydride at ultra-low temperature. Int J Hydrog Energy 38(20):8328–8341.  https://doi.org/10.1016/j.ijhydene.2013.04.098CrossRefGoogle Scholar
  28. 28.
    Hum B, Junkaew A, Arróyave R et al (2014) Size and stress dependent hydrogen desorption in metastable Mg hydride films. Int J Hydrog Energy 39(6):2597–2607.  https://doi.org/10.1016/j.ijhydene.2013.12.017CrossRefGoogle Scholar
  29. 29.
    Matsumoto I, Asano K, Sakaki K, Nakamura Y (2011) Hydrogen absorption kinetics of magnesium fiber prepared by vapor deposition. Int J Hydrog Energy 36(22):14488–14495.  https://doi.org/10.1016/j.ijhydene.2011.08.029CrossRefGoogle Scholar
  30. 30.
    Higuchi K, Kajioka H, Toiyama K et al (1999) In situ study of hydriding–dehydriding properties in some Pd/Mg thin films with different degree of Mg crystallization. J Alloys Compd 293–295:484–489.  https://doi.org/10.1016/S0925-8388(99)00470-3CrossRefGoogle Scholar
  31. 31.
    Bazzanella N, Checchetto R, Miotello A (2004) Catalytic effect on hydrogen desorption in Nb-doped microcrystalline MgH2. Appl Phys Lett 85(22):5212–5214.  https://doi.org/10.1063/1.1829155CrossRefGoogle Scholar
  32. 32.
    Reddy G, Kumar S (2014) Reversible hydrogen storage in vapour deposited Mg-5 at.% Pd powder composites. Int J Hydrog Energy 39(9):4421–4426.  https://doi.org/10.1016/j.ijhydene.2014.01.007CrossRefGoogle Scholar
  33. 33.
    Fry C, Grant D, Walker G (2013) Improved hydrogen cycling kinetics of nano-structured magnesium/transition metal multilayer thin films. Int J Hydrog Energy 38(2):982–990.  https://doi.org/10.1016/j.ijhydene.2012.10.089CrossRefGoogle Scholar
  34. 34.
    Higuchi K, Yamamoto K, Kajioka H et al (2002) Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. J Alloys Compd 330-332:526–530.  https://doi.org/10.1016/S0925-8388(01)01542-0CrossRefGoogle Scholar
  35. 35.
    Tan X, Harrower C, Amirkhiz B et al (2009) Nano-scale bi-layer Pd/Ta, Pd/Nb, Pd/Ti and Pd/Fe catalysts for hydrogen sorption in magnesium thin films. Int J Hydrog Energy 34(18):7741–7748.  https://doi.org/10.1016/j.ijhydene.2009.07.026CrossRefGoogle Scholar
  36. 36.
    Zahiri B, Amirkhiz S, Mitlin D (2010) Hydrogen storage cycling of MgH2 thin film nanocomposites catalyzed by bimetallic Cr Ti. Appl Phys Lett 97(8):083106.  https://doi.org/10.1063/1.3479914CrossRefGoogle Scholar
  37. 37.
    Pranevicius L, Milcius D, Templier C et al (2009) Studies of Ms film and substrate coupling effects on hydrogenation properties. J Alloys Compd 488(1):360–363.  https://doi.org/10.1016/j.jallcom.2009.08.133CrossRefGoogle Scholar
  38. 38.
    Mooij L, Dam B (2013) Hysteresis and the role of nucleation and growth in the hydrogenation of Mg nanolayers. Phys Chem Chem Phys 15:11501–11510.  https://doi.org/10.1039/C3CP44441DCrossRefGoogle Scholar
  39. 39.
    Qu J, Wang Y, Xie L et al (2009) Hydrogen absorption–desorption, optical transmission properties and annealing effect of Mg thin films prepared by magnetron sputtering. Int J Hydrog Energy 34(4):1910–1915.  https://doi.org/10.1016/j.ijhydene.2008.12.039CrossRefGoogle Scholar
  40. 40.
    Gautam Y, Chawla A, Khan S et al (2012) Hydrogen absorption and optical properties of Pd/Mg thin films prepared by DC magnetron sputtering. Int J Hydrog Energy 37(4):3772–3778.  https://doi.org/10.1016/j.ijhydene.2011.04.041CrossRefGoogle Scholar
  41. 41.
    Borsa D, Gremaud R, Baldi A et al (2007) Structural, optical, and electrical properties of MgyTi1−yHx thin films. Phys Rev B 75(20):205408.  https://doi.org/10.1103/PhysRevB.75.205408CrossRefGoogle Scholar
  42. 42.
    Cermak J, Kral L (2012) Ageing of Mg-Ni-H hydrogen storage alloys. Int J Hydrog Energy 37(19):14257–14264.  https://doi.org/10.1016/j.ijhydene.2012.07.049CrossRefGoogle Scholar
  43. 43.
    Lohstroh W, Westerwaal R, Mechelen L et al (2004) Structural and optical properties of Mg2NiHx switchable mirrors upon hydrogen loading. Phys Rev B 70(16):165411.  https://doi.org/10.1103/PhysRevB.70.165411CrossRefGoogle Scholar
  44. 44.
    Lohstroh W, Westerwaal R, Noheda D et al (2004) Self-organized layered hydrogenation in black Mg2NiHx switchable mirrors. Phys Rev Lett 93(19):197404.  https://doi.org/10.1103/PhysRevLett.93.197404CrossRefGoogle Scholar
  45. 45.
    Veleckis E, Edwards R (1969) Thermodynamic properties in the systems vanadium-hydrogen, niobium-hydrogen, and tantalum-hydrogen. J Phys Chem 73(3):683–692.  https://doi.org/10.1021/j100723a033CrossRefGoogle Scholar
  46. 46.
    Joubert J, Percheron-Guégan A (2001) Hydrogen absorption in vanadium- and niobium-based topologically close-packed structures. J Alloys Compd 317–318:71–76.  https://doi.org/10.1016/S0925-8388(00)01359-1CrossRefGoogle Scholar
  47. 47.
    Kuriiwa T, Tamura T, Amemiya T et al (1999) New V-based alloys with high protium absorption and desorption capacity. J Alloys Compd 293–295:433–436.  https://doi.org/10.1016/S0925-8388(99)00325-4CrossRefGoogle Scholar
  48. 48.
    Steiger J, Blässer S, Weidinger A (1994) Solubility of hydrogen in thin niobium films. Phys Rev B 49(8):5570–5574.  https://doi.org/10.1103/PhysRevB.49.5570CrossRefGoogle Scholar
  49. 49.
    Moehlecke S, Majkrzak C, Stroning M (1985) Enhanced hydrogen solubility in niobium films. Phys Rev B 31(10):6804–6806.  https://doi.org/10.1103/PhysRevB.31.6804CrossRefGoogle Scholar
  50. 50.
    Blässer S, Steiger J, Weidinger A (1994) In-situ hydrogen charging of thin Nb films and depth profiling with the 1H(15N, αγ)12C nuclear reaction. Nucl Instrum Method B 85:24–27.  https://doi.org/10.1016/0168-583X(94)95778-9CrossRefGoogle Scholar
  51. 51.
    Reisfeld G, Jisrawi N, Ruckman M et al (1996) Hydrogen absorption by thin Pd/Nb films deposited on glass. Phys Rev B 53(8):4974–4979.  https://doi.org/10.1103/PhysRevB.53.4974CrossRefGoogle Scholar
  52. 52.
    Rehm C, Fritzsche H, Maletta H et al (1999) Hydrogen concentration and its relation to interplanar spacing and layer thickness of 1000-Å Nb(110) films during in situ hydrogen charging experiments. Phys Rev B 59(4):3142–3152.  https://doi.org/10.1103/PhysRevB.59.3142CrossRefGoogle Scholar
  53. 53.
    Miceli P, Zabel H, Cunningham J (1985) Hydrogen-induced strain modulation in Nb-Na superlattices. Phys Rev Lett 54(9):917–919.  https://doi.org/10.1103/PhysRevLett.54.917CrossRefGoogle Scholar
  54. 54.
    Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrog Energy 32(9):1121–1140.  https://doi.org/10.1016/j.ijhydene.2006.11.022CrossRefGoogle Scholar
  55. 55.
    Yukawa H, Takagi M, Teshima A et al (2002) Alloying effects on the stability of vanadium hydrides. J Alloys Compd 330–332:105–109.  https://doi.org/10.1016/S0925-8388(01)01526-2CrossRefGoogle Scholar
  56. 56.
    Andersson G, Aits K, Hjörvarsson B (2002) Hydrogen uptake of thin epitaxial vanadium (001) films. J Alloys Compd 334(1–2):14–19.  https://doi.org/10.1016/S0925-8388(01)01743-1CrossRefGoogle Scholar
  57. 57.
    Bloch J, Hjörvarsson B, Olsson S et al (2007) Reversible structural change and thermodynamic properties of hydrogen in thin vanadium films. Phys Rev B 75(16):65418.  https://doi.org/10.1103/PhysRevB.75.165418CrossRefGoogle Scholar
  58. 58.
    Andersson G, Hjörvarsson B, Isberg P (1997) Influence of compressive biaxial strain on the hydrogen uptakeof ultrathin single-crystal vanadium layers. Phys Rev B 55(3):1774–1781.  https://doi.org/10.1103/PhysRevB.55.1774CrossRefGoogle Scholar
  59. 59.
    Andersson G, Hjörvarsson B, Zabel H (1997) Hydrogen-induced lattice expansion of vanadium in a Fe/V (001) single-crystal superlattice. Phys Rev B 55(23):15905–15911.  https://doi.org/10.1103/PhysRevB.55.15905CrossRefGoogle Scholar
  60. 60.
    Hjörvarsson B, Rydén J, Karlsson E et al (1991) Interface effects of hydrogen uptake in Mo/V single-crystal superlattices. Phys Rev B 43(8):6440–6445.  https://doi.org/10.1103/PhysRevB.43.6440CrossRefGoogle Scholar
  61. 61.
    Stillesjö F, Ólafsson S, Isberg P et al (1995) Thermodynamic properties of hydrogen in quasi-two-dimensional vanadium lattices. J Phys-Condens Matter 7(42):8139–8144.  https://doi.org/10.1088/0953-8984/7/42/010CrossRefGoogle Scholar
  62. 62.
    Griessen R, Riesterer T (1988) Heat of formation models. In: Schlapbach L (ed) Hydrogen in intermetallic compounds I. Topics in applied physics, vol 63. Springer, Berlin, pp 219–284Google Scholar
  63. 63.
    Orimo S, Kimmerle F, Majer G (2001) Hydrogen in nanostructured vanadium-hydrogen systems. Phys Rev B 63(9):094307–094310.  https://doi.org/10.1103/PhysRevB.63.094307CrossRefGoogle Scholar
  64. 64.
    Belyakov L, Makarova T, Sakharov V et al (1998) Composition and porosity of multicomponent structures: porous silicon as a three-component system. Semiconductors 32(9):1003–1010.  https://doi.org/10.1134/1.1187534CrossRefGoogle Scholar
  65. 65.
    Bryk V, Vasilenko R, Goncharov A et al (2011) Formation mechanism, structure and adsorption characteristics microporous nanocrystalline thin-film (V,Ti)-N-He composites. J Surf Investig-X-ray 5(3):566–574.  https://doi.org/10.1134/S1027451011060061CrossRefGoogle Scholar
  66. 66.
    Wang YQ (2004) Hydrogen standards in elastic recoil detection analysis. Nucl Instrum Method B 219–220:115–124.  https://doi.org/10.1016/j.nimb.2004.01.038CrossRefGoogle Scholar
  67. 67.
    Bryk V, Guglya A, Kalchenko A et al (2015) Hydrogen storage in VNx – Hy thin films. Open Access Libr J 2: e2228.  https://doi.org/10.4236/oalib.1102228, 1CrossRefGoogle Scholar
  68. 68.
    Guglya A, Kalchenko A, Solopikhina E et al (2016) Nanocrystalline porous thin film VNx hydrogen absorbents: method of production, structure and properties. J Adv Nanomater 1(1):1–10.  https://doi.org/10.22606/jan.2016.11001

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kharkov Institute of Physics and TechnologyNational Science CenterKharkovUkraine
  2. 2.Department of PhysicsNational Technical University “Kharkov Polytechnic Institute”KharkovUkraine

Personalised recommendations