Advertisement

Biobased Polyamide Ecomaterials and Their Susceptibility to Biodegradation

  • Mariya Kyulavska
  • Natalia Toncheva-Moncheva
  • Joanna RydzEmail author
Reference work entry

Abstract

Widely used petrochemical polymers have negative impact on the environment, so the use of biobased material should become widespread due to growing interest in sustainability and environmental issues. The use of renewable raw materials substantially improves the carbon footprint and has a positive impact on the life-cycle assessment of plastic products; thus, the development of polyamides from renewable resources – one of the largest industrial scale engineering plastics of great significance – is very important. This review focuses on recent research and development of biobased polyamides. Environmental impact of polyamides is described in view of the potential applications in various fields. Biodegradation of polyamides and some factors affecting their biodegradability are also presented.

References

  1. 1.
    Nguyen XH, Honda T, Wang Y, Yamamoto R (2010) Eco-materials. Module-H, University of Tokyo, pp 123–134. Retrieved from http://www.peekyou.com/x-h_nguyen
  2. 2.
    Rydz J, Sikorska W, Kyulavska M, Christova D (2015) Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16(1):564–596.  https://doi.org/10.3390/ijms16010564CrossRefGoogle Scholar
  3. 3.
    Greener INDUSTRY. Nylon. http://www.greener-industry.org.uk/index.htm. Accessed 27 Jun 2017
  4. 4.
    Page IB (2000) Polyamides as engineering thermoplastic materials. Rapra Review Reports 11(1):Report 121Google Scholar
  5. 5.
    McMurry JE (2016) Fundamentals of organic chemistry, 6th edn. Cram101 Textbook ReviewsGoogle Scholar
  6. 6.
    Polyamides. Chapter I, p 247–281. http://wpage.unina.it/avitabil/testi/Nylon.pdf. Accessed 26 Jun 2017
  7. 7.
    Wypych G (2016) Handbook of Polymers, 2nd edn. Toronto 2016, TorontoGoogle Scholar
  8. 8.
    Ellis B, Smith R (eds) (2008) Polymers: a property database, 2nd edn. Boca Raton, CRC PressGoogle Scholar
  9. 9.
    Global Chemical Network. http://www.chemnet.com/. Accessed 27 Jun 2017
  10. 10.
    Look for chemicals. http://www.lookchem.com/. Accessed 27 Jun 2017
  11. 11.
    PubChem Compound. https://www.ncbi.nlm.nih.gov/pccompound. Accessed 27 Jun 2017
  12. 12.
    Guidechem. http://www.guidechem.com/. Accessed 27 Jul 2017
  13. 13.
    Ichemistry. http://search.ichemistry.cn/. Accessed 27 Jul 2017
  14. 14.
    (1994) Polyamide (nylon) plastics: properties, performance, and military applications, Military handbook, MIL-HDBK-797(AR), Department of Defense, USA. http://www.everyspec.com. Accessed 27 Jun 2017
  15. 15.
    polymerdatabase.com (2015) Polyamides. In: Polymer properties database. http://polymerdatabase.com/polymer%20classes/Polyamide%20type.html. Accessed 26 Jun 2017
  16. 16.
    Maitz MF (2015) Applications of synthetic polymers in clinical medicine. Biosurf Biotribol 1(3):161–176.  https://doi.org/10.1016/j.bsbt.2015.08.002CrossRefGoogle Scholar
  17. 17.
    Winnacker M, Rieger B (2016) Biobased polyamides: recent advances in basic and applied research. Macromol Rapid Commun 37:1391–1413.  https://doi.org/10.1002/marc.201600181CrossRefGoogle Scholar
  18. 18.
    Marketsandmarkets CH 1385 (2017) Polyamide market by application (engineering plastics, fiber), type (PA 6, PA 66, bio-based & specialty polyamides), and region (Asia-Pacific, North America, Europe, Middle East & Africa, South America) – global forecast to 2021. http://www.marketsandmarkets.com/Market-Reports/global-nylon-market-930.html. Accessed 20 Jul 2017
  19. 19.
    Rohan. Polyamide Market worth 30.76 Billion USD by 2021. http://www.marketsandmarkets.com/PressReleases/global-nylon.asp. Accessed 20 Jul 2017
  20. 20.
    Endres HJ, Siebert-Raths A (2011) Engineering biopolymers markets, manufacturing, properties and applications. Carl Hanser Verlag, Munich, p 95CrossRefGoogle Scholar
  21. 21.
    Liu Z, Zhou P, Yan D (2004) Preparation and properties of nylon-1010/montmorillonite nanocomposites by melt intercalation. J Appl Polym Sci 91:1834–1841.  https://doi.org/10.1002/app.13336CrossRefGoogle Scholar
  22. 22.
    Zeng H, Gao C, Wang Y, Watts PCP, Kong H, Cui X, Yan D (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47:113–122.  https://doi.org/10.1016/j.polymer.2005.11.009CrossRefGoogle Scholar
  23. 23.
    Liu T, Lim KP, Tjiu WC, Pramoda KP, Chen ZK (2003) Preparation and characterization of nylon 11/organoclay nanocomposites. Polymer 44:3529–3535.  https://doi.org/10.1016/S0032-3861(03)00252-0CrossRefGoogle Scholar
  24. 24.
    Rajesh JJ, Bijwe J (2004) Influence of fillers on the low amplitude oscillating wear behaviour of polyamide 11. Wear 256(1–2):1–8.  https://doi.org/10.1016/S0043-1648(03)00200-XCrossRefGoogle Scholar
  25. 25.
    Mark HF (2005) Encyclopedia of polymer science and technology, 3rd edn, vol. 3. John Wiley & Sons, Weinheim, p 559Google Scholar
  26. 26.
    Rydz J, Musioł M, Zawidlak-Węgrzyńska B, Sikorska W (2017) Present and future of (bio)degradable polymers for food packaging applications. In: Grumezescu AM, Holban AM (eds) Handbook of food bioengineering, vol. 20. Elsevier, in printGoogle Scholar
  27. 27.
    nova-Institut GmbH (2017) TOP Bio-based polymers worldwide: Ongoing growth despite difficult market environment. http://news.bio-based.eu/bio-based-polymers-worldwide-ongoing-growth-despite-difficult-market-environment/. Accessed 27 Jun 2017
  28. 28.
    nova-Institut GmbH (2015) Bio-based Building Blocks and Polymers in the World, nova-Institut GmbH, Version 2015–05Google Scholar
  29. 29.
    Cathay Industrial Biotech Ltd. http://www.cathaybiotech.com/en/. Accessed 23 Jul 2017
  30. 30.
    Jiang Y, Loos K (2016) Enzymatic synthesys of biobased polyesters and polyamides. Polymers 8:243.  https://doi.org/10.3390/polym8070243CrossRefGoogle Scholar
  31. 31.
    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558.  https://doi.org/10.1039/c1cs15147aCrossRefGoogle Scholar
  32. 32.
    Salimon J, Salih N, Yousif E (2012) Industrial development and applications of plant oils and their biobased oleochemicals. Arab J Chem 5(2):135–145.  https://doi.org/10.1016/j.arabjc.2010.08.007CrossRefGoogle Scholar
  33. 33.
    De Espinosa LM, Meier MAR (2010) Plant oils: the perfect renewable resource for polymer science?! Euro Polym J 47:837–852.  https://doi.org/10.1016/j.eurpolymj.2010.11.020CrossRefGoogle Scholar
  34. 34.
    Baumann F-E, Haeger H (2007) Polyamides from renewable feedstock – New materials versus established products, L14. Fats and oils as renewable feedstock for the chemical industry. Program Abstracts list of participants 2–3 Sep Emden, GermanyGoogle Scholar
  35. 35.
    Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091.  https://doi.org/10.1016/j.biortech.2005.03.028CrossRefGoogle Scholar
  36. 36.
    Florjańczyk Z, Dębowski M, Chwojnowska E, Łokaj K, Ostrowska J (2009) Synthetic and natural polymers in modern polymeric materials. Part I. Polymers from renewable resources and polymer nanocomposites. Polimery 54:609–694CrossRefGoogle Scholar
  37. 37.
    Kuciel S, Kuźniar P, Liber-Kneć A (2012) Polyamides from renewable sources as matrices of short fiber reinforced biocomposites. Polimery 57(9):627–634CrossRefGoogle Scholar
  38. 38.
    Biron M (ed) (2017) Industrial applications of renewable plastics: environmental, technological, and economic advances. Plastics Design Library, William Andrew, Elsevier, Oxford/AmsterdamGoogle Scholar
  39. 39.
    Thielen M (2010) Basic of bio-polyamies. Bioplastics. MAGAZINE 3:50–53Google Scholar
  40. 40.
    Ensinger 10/12 E9911075A011GB (2012) Engineering plastics – The Manual. https://www.ensinger-inc.com/downloads/lit_brochures/Ensinger-Manual.pdf. Accessed 20 Jul 2017
  41. 41.
    Bio-based News (2014) BASF presents Ultramid® for flexible packaging films derived from renewable raw materials. http://news.bio-based.eu/basf-presents-ultramid-flexible-packaging-films-derived-renewable-raw-materials/. Accessed 23 Jul 2017
  42. 42.
    Ahmadi S, Morshedian J, Hashemi SA (2010) Effects of molecular weight on the dynamic mechanical and rheological properties of anionically polymerized polyamide 6 containing nanofiber. J Vinyl Addit Technol 16:152–160.  https://doi.org/10.1002/vnl.20223CrossRefGoogle Scholar
  43. 43.
    Reimschuessel HK (1977) Nylon 6. Chemistry and mechanisms. J Polym Sci Macromol Rev 12:65–139.  https://doi.org/10.1002/pol.1977.230120102CrossRefGoogle Scholar
  44. 44.
    Laredo E, Hernandez MC (1997) Moisture effect on the low- and high-temperature dielectric relaxations in nylon-6. J Polym Sci B Polym Phys 35:2879–2888.  https://doi.org/10.1002/(SICI)1099-0488(199712)35:17<2879::AID-POLB11>3.0.CO;2-4CrossRefGoogle Scholar
  45. 45.
    Jiang Y, Loos K (2016) Polymers 8(7)243: 53 pages. doi:  https://doi.org/10.3390/polym8070243CrossRefGoogle Scholar
  46. 46.
    Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ (2011) Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew Chem Int Ed Engl 50(31):7083–7087.  https://doi.org/10.1002/anie.201102156CrossRefGoogle Scholar
  47. 47.
    Saskiawan I (2008) Biosynthesis of polyamide 4, a biobased and biodegradable polymer. Microbiol Indonesia 2:119–123CrossRefGoogle Scholar
  48. 48.
    Han J (2017) Biorenewable strategy for catalytic ε-caprolactam production using cellulose- and hemicellulose-derived γ-valerolactone. ACS Sustain Chem Eng 5(2):1892–1898.  https://doi.org/10.1021/acssuschemeng.6b02616CrossRefGoogle Scholar
  49. 49.
    International Organization for Standardization. ISO 1110:1995. Plastics - Polyamides - Accelerated conditioning of test specimens. Technical Committee: ISO/TC 61/SC 9 Thermoplastic materialsGoogle Scholar
  50. 50.
    Becker GW, Braun D, Bottenbruch L, Binsack R (1998) Polyamide. In: Kunststoff Handbuch, vol 3/4. Hanser Verlag, München-WienGoogle Scholar
  51. 51.
    Kellie G (ed) (2016) Advances in technical nonwovens, Woodhead publishing series in textiles: number, vol 181. Woodhead Publishing, Elsevier, Oxford/AmsterdamGoogle Scholar
  52. 52.
    Carlson E, Nelson K (2003) Nylon under the hood: a history of innovation. DuPont™Google Scholar
  53. 53.
    Dros AB, Larue O, Reimond A, De Campoa F, Pera-Titus M (2015) Hexamethylenediamine (HMDA) from fossil- vs. bio-based routes: an economic and life cycle assessment comparative study. Green Chem 17:4760–4772.  https://doi.org/10.1039/C5GC01549ACrossRefGoogle Scholar
  54. 54.
  55. 55.
    Arkema S.A. Arkema new high performance long chain polyamide-PA XY (Rilsan T & Hiprolon®) http://www.arkema.co.jp/export/sites/japan/.content/medias/downloads/2016-plastic-japan-rilsan-t-and-hiprolon-en.pdf. Accessed 24 Jul 2017
  56. 56.
    Arkema S.A. Rilsan® Polyamide 11 resin. http://www.arkema.com/en/products/product-finder/product-viewer/Rilsan-Polyamide-11-Resin/. Accessed 24 Jul 2017
  57. 57.
  58. 58.
    Plastim. Nylon 11. http://plastim.co.uk/nylon-11. Accessed 25 Jul 2017
  59. 59.
    Agiplast. The global leader in compounding high performance polymers. http://www.agiplast-compounding.com/. Accessed 25 Jul 2017
  60. 60.
    Martino L, Basilissi L, Farina H, Ortenzi M-A, Zini E, Silvestro G-D, Scandola M (2014) Bio-based polyamide 11: synthesis, rheology and solid-state properties of star structures. Eur Polym J 59:69–77CrossRefGoogle Scholar
  61. 61.
    biowerkstoff-kongress. High performance polyamide 12 based on a 100% renewable resource. http://www.biowerkstoff-kongress.de/media/files/Award/15EvonikIndustriesAG-AdditionaldocumentEN.pdf. Accessed 13 Jul 2017
  62. 62.
    McKeen LW (2010) Polyamides (nylons), chapter 8. In: Fatigue and tribological properties of plastics and elastomers, 2nd edn. William Andrew, Elsevier, Oxford/Amsterdam, pp 175–228CrossRefGoogle Scholar
  63. 63.
  64. 64.
    RTP Co. NYLON 12 (PA) — POLYAMIDE 12. https://www.rtpcompany.com/products/product-guide/nylon-12-pa-polyamide-12/. Accessed 26 Jul 2017
  65. 65.
    PP Performance Plastics. Nylon 12 (PA12). http://www.performance-plastics.co.uk/product/classification/nylon-12-pa12/. Accessed 26 Jul 2017
  66. 66.
    Sculpteo. 3D printing material: Grey Plastic. https://www.sculpteo.com/en/materials/grey-plastic-material/. Accessed 26 Jul 2017
  67. 67.
    Cai Z, Liu X, Zhou Q, Wang Y, Zhu C, Xiao X, Fang D, Bao H (2017) The structure evolution of polyamide 1212 after stretched at different temperatures and its correlation with mechanical properties. Polymer 117:249–258.  https://doi.org/10.1016/j.polymer.2017.04.037CrossRefGoogle Scholar
  68. 68.
    Ren M, Song J, Zhao Q, Li Y, Chen Q, Zhang H, Mo Z (2004) Primary and secondary crystallization kinetic analysis of nylon 1212. Polym Int 53:1658–1665.  https://doi.org/10.1002/pi.1490CrossRefGoogle Scholar
  69. 69.
    Cai Z, Bao H, Zhu C, Zhu S, Huang F, Shi J, Hu J, Zhou Q (2016) Structure evolution of polyamide 1212 during the uniaxial stretching process: in situ synchrotron wide-angle X-ray diffraction and small-angle X-ray scattering analysis. Ind Eng Chem Res 55(28):7621–7627.  https://doi.org/10.1021/acs.iecr.6b00643CrossRefGoogle Scholar
  70. 70.
    Griehl W, Ruestem D (1970) Nylon-12-preparation, properties, and applications. Ind Eng Chem 62(3):16–22.  https://doi.org/10.1021/ie50723a005CrossRefGoogle Scholar
  71. 71.
    Glasscock D, Atolino W, Kozielski G, Martens M (2006) High performance polyamides fulfill demanding requirements for automotive thermal management components. DuPont Engineering Polymers, Wilmington, 9 pagesGoogle Scholar
  72. 72.
    DSM (2016) DSM supplies Stanyl PA 46 for low-friction timing system parts on the latest generation petrol engines. https://www.dsm.com/products/stanyl/en_US/press-releases/2016/01/2016-01-11-dsm-supplies-stanyl-pa-46-for-low-friction-timing-system-parts-on-the-latest-generation-petrol-engines.html. Accessed 19 Jul 2017
  73. 73.
    Matbase: the free and independent online materials properties resource. https://www.matbase.com/. Accessed 20 Jul 2017
  74. 74.
    Zhang Z, Huang K, Liu Z (2011) Synthesis of high molecular weight nylon 46 in supercritical carbon dioxide. Macromolecules 44:820–825.  https://doi.org/10.1021/ma102696yCrossRefGoogle Scholar
  75. 75.
    Tsuge Y, Kawaguchi H, Sasaki K, Kondo A (2016) Engineering cell factories for producing building block chemicals for bio-polymer synthesis. Microb Cell Factories 15(19):12 pages.  https://doi.org/10.1186/s12934-016-0411-0
  76. 76.
    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558.  https://doi.org/10.1039/c1cs15147aCrossRefGoogle Scholar
  77. 77.
    Bruder U (2015) In: Smith M (ed) User’s guide to plastic. Hanser Publishers, MunichCrossRefGoogle Scholar
  78. 78.
    Materials/DSM (2009) Biobased engineering plastic. bioplastics MAGAZINE 05:26Google Scholar
  79. 79.
    Leszczyńska A, Kiciliński P, Pielichowsk K (2015) Biocomposites of polyamide 4.10 and surface modified microfibrillated cellulose (MFC): influence of processing parameters on structure and thermomechanical properties. Cellulose 22(4):2551–2569.  https://doi.org/10.1007/s10570-015-0657-4CrossRefGoogle Scholar
  80. 80.
    Pagacz J, Raftopoulos KN, Leszczyńska A, Pielichowski K (2016) Bio-polyamides based on renewable raw materials glass transition and crystallinity studies. J Therm Anal Calorim 123:1225–1237.  https://doi.org/10.1007/s10973-015-4929-xCrossRefGoogle Scholar
  81. 81.
    Janssen PGA, Ligthart GBWL, Rulkens R, (2012) Polyamide containing monomer units of 1,4-butylene diamine. Patent WO2012110413 A1Google Scholar
  82. 82.
    Becker B, Kopannia S, Nataniel T, Ticozzelli F, Heinrich D, Marchese L (2012) Hydrolytically stable polyamide. Patent US 20120175817 A1Google Scholar
  83. 83.
    Jasinska-Walc L, Dudenko D, Rozanski A, Thiyagarajan S, Sowinski P, van Es D, Shu J, Hansen MR, Koning CE (2012) Structure and molecular dynamics in renewable polyamides from dideoxy–diamino isohexide. Macromolecules 45(14):5653–5666.  https://doi.org/10.1021/ma301091aCrossRefGoogle Scholar
  84. 84.
    Jasinska L, Villani M, Wu J, van Es D, Klop E, Rastogi S, Koning CE (2011) Novel, fully biobased semicrystalline polyamides. Macromolecules 44(9):3458–3466.  https://doi.org/10.1021/ma200256vCrossRefGoogle Scholar
  85. 85.
    CHINAPLAS (2013) Cathay Industrial Biotech, Ltd. – a global producer of bio-based long-chain dicarboxylic acids. http://webcache.googleusercontent.com/search?q=cache:uwltNtve2DgJ:www.2456.com/physhows/12-2R61_202655_20130321035649_eng.doc+&amp;cd=1&amp;hl=pl&amp;ct=clnk&amp;gl=pl. Accessed 23 Jul 2017
  86. 86.
    Ma W, Chen K, Li Y, Hao N, Wang X, Ouyang P (2017) Advances in Cadaverine bacterial production and its applications, engineering, green chemical engineering – review. Engineering 3(3):308–317.  https://doi.org/10.1016/J.ENG.2017.03.012CrossRefGoogle Scholar
  87. 87.
    Jiang Y, Loos K (2016) Enzymatic synthesis of biobased polyesters and polyamides. Polymers 8(7)243:53 pages. doi:  https://doi.org/10.3390/polym8070243CrossRefGoogle Scholar
  88. 88.
    Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71(9):2130–2135.  https://doi.org/10.1271/bbb.60699CrossRefGoogle Scholar
  89. 89.
    Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Gv A, Zelder O, Wittmann C (2014) From zero to hero – production of biobased nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Engp 25:113–123.  https://doi.org/10.1016/j.ymben.2014.05.007CrossRefGoogle Scholar
  90. 90.
    Feddersen KD (2017) AKROMID® S eco-friendly resin. Polyamide 6:10. https://akro-plastic.com/product-overview/pa-610-polyamid-610/. Accessed 23 Jul 2017Google Scholar
  91. 91.
    ANIDPOLYMERS. Polyamide 610 Molding (PA 610 L). http://anid.ru/en/poliamid/610. Accessed 23 Jul 2017
  92. 92.
  93. 93.
    Armioun S, Pervaiz M, Sain M (2017) Biopolyamides and high-performance natural fiber-reinforced biocomposites biopolyamides and high-performance natural fiber-reinforced biocomposites, chapter 10. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials, physico-chemical and mechanical characterization, vol 3. Wiley, Weinheim, pp 253–270CrossRefGoogle Scholar
  94. 94.
  95. 95.
    RTP Co. NYLON 6/12 (PA) — POLYAMIDE 6/12. https://www.rtpcompany.com/products/product-guide/nylon-612-pa-polyamide-612/. Accessed 24 Jul 2017
  96. 96.
    Arkema S.A. (2013) Arkema and Addiplast join forces to develop new polyamide compounds. http://www.arkema.com/export/sites/global/.content/medias/downloads/news-attachments/pr-partnership-arkema-addiplast.pdf. Accessed 24 Jul 2017
  97. 97.
    Mobley DP (1999) Biosynthesis of Long-Chain Dicarboxylic Acid Monomers From Renewable Resources. Final Technical Report No. DE-FC36-95G01 0099. GE Corporate Research and Development, New York, USGoogle Scholar
  98. 98.
    Biolon™ DDDA. https://verdezyne.com/industrial/. Accessed 23 Jul 2017
  99. 99.
    Biangardi H-J (1990) Brill transition of polyamide 6.12. J Polym Sci B Polym Phys 29(2–3):139–153.  https://doi.org/10.1080/00222349008245770CrossRefGoogle Scholar
  100. 100.
    Rennovia (2015) Company Overview for BIO Montreal. https://www.bio.org/sites/default/files/WorldCongress/Tom%20Boussie.pdf. Accessed 23 Jul 2017
  101. 101.
    Castoroil.in (2009) Sebacic Acid. http://www.castoroil.in/castor/castor_seed/castor_oil/sebacic_acid/sebacic_acid.html. Accessed 23 Jul 2017
  102. 102.
    FKuR. Development – Production – Distribution of biodegradable and biobased polymers. http://fkur.com/en/. Accessed 24 Jul 2017
  103. 103.
    Castello Italia srl. POLYAMIDE 1012 (PA1012). http://www.castelloitalia.it/polyamidepa10-12/. Accessed 24 Jul 2017
  104. 104.
  105. 105.
    Evonik (2014) Evonik polyamide PA1010 quality confirmed through FDA approval. http://corporate.evonik.com/en/media/search/pages/news-details.aspx?newsid=47708. Accessed 24 Jul 2017
  106. 106.
    DuPont. A comprehensive portfolio of performance nylon resin products http://www.dupont.com/products-and-services/plastics-polymers-resins/thermoplastics/brands/zytel-nylon.html. Accessed 24 Jul 2017
  107. 107.
  108. 108.
    Nikiforov AA, Okhotina NA, Fayzullin IZ, Volfson SI, Rinberg R, Kroll L (2016) Stress-strain properties of composites based on bio-based polyamide 1010 filled with cut fibers. AIP Conference Proceedings 1785(030018).  https://doi.org/10.1063/1.4967039
  109. 109.
    Winnacker M, Rieger B (2016) Biobased polyamides: recent advances in basic and applied research. Macromol Rapid Commun 37(17):1391–1413.  https://doi.org/10.1002/marc.201600181CrossRefGoogle Scholar
  110. 110.
    Wang Z, Wei T, Xue X, He M, Xue J, Song M, Wu S, Kang H, Zhang L, Jia Q (2014) Synthesis of fully bio-based polyamides with tunable properties by employing itaconic acid. Polymer 55(19):4846–4856.  https://doi.org/10.1016/j.polymer.2014.07.034CrossRefGoogle Scholar
  111. 111.
    Cottereau V (2013) Arkema and Addiplast join forces to develop new polyamide compounds. http://www.arkema.com/en/media/news/news-details/Arkema-and-Addiplast-join-forces-to-develop-new-polyamide-compounds/. Accessed 24 Jul 2017
  112. 112.
    Quiles-Carrillo L, Montanes N, Boronat T, Balart R, Torres-Giner S (2017) Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polym Test 61:421–429.  https://doi.org/10.1016/j.polymertesting.2017.06.004CrossRefGoogle Scholar
  113. 113.
    He J, Samanta S, Selvakumar S, Lattimer J, Ulven C, Sibi M, Bahr J, Chisholm BJ (2013) Polyamides based on the renewable monomer, 1,13-tridecane diamine I: synthesis and characterization of nylon 13,T. Green Mater 1(2):114–124.  https://doi.org/10.1680/gmat.12.00021CrossRefGoogle Scholar
  114. 114.
    Samanta S, He J, Selvakumar S, Lattimer J, Ulven C, Sibi M, Bahr J, Chisholm BJ (2013) Polyamides based on the renewable monomer, 1,13-tridecane diamine II: synthesis and characterization of nylon 13,6. Polymer 54:1141–1149CrossRefGoogle Scholar
  115. 115.
    Bechthold I, Bretz K, Kabasci S, Kapitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654.  https://doi.org/10.1002/ceat.200800063CrossRefGoogle Scholar
  116. 116.
    Kohan MI, Mestemacher SA, Pagilagan RU, Redmond K (2003) Polyamides in Ullmann’s encyclopedia of industrial chemistry. John Wiley & Sons, WeinheimGoogle Scholar
  117. 117.
  118. 118.
    Włodarczyk J, Sikorska W, Rydz J, Johnston B, Jiang G, Radecka I, Kowalczuk M (2018) 3D processing of PHA containing (bio)degradable materials. In: Koller M (ed) Current advances in Biopolymer Processing & Characterization. Nova Science Publishers, Hauppauge. under reviewGoogle Scholar
  119. 119.
    3D printing from scratch. 119D Printer Filament Types Overview. http://3dprintingfromscratch.com/common/3d-printer-filament-types-overview/. Accessed 26 Jul 2017
  120. 120.
  121. 121.
    Arkema S.A. Rilsamid® polyamide 12 resin. http://www.arkema.com/en/products/product-finder/product-viewer/Rilsamid-Polyamide-12-Resin. Accessed 26 Jul 2017
  122. 122.
    Cruz P, Shoemake ED, Adam P, Leachman J (2015) Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen, Published under licence by IOP Publishing Ltd, IOP Conference Series: Materials Science and Engineering, Vol. 102, conference 1Google Scholar
  123. 123.
    BASF SE (2016) Polyamide-6 powder opens a new era in 3D printing. https://www.basf.com/cn/en/company/news-and-media/BASF-Information/Innovation/Polyamide-6-powder-opens-a-new-era-in-3D-printing.html. Accessed 26 Jul 2017
  124. 124.
    Prodways Group. A complete solution for polymer powders for laser sintering. http://www.prodways.com/en/type/plastic-powders/. Accessed 27 Jul 2017
  125. 125.
    (2017) Ford tests large-scale 3D printing. Metal Powder Report 72(3):208–209.  https://doi.org/10.1016/j.mprp.2017.04.015
  126. 126.
    Brookes KJA (2015) Aviation finds that extra dimension. Metal Powder Report 70(5):239–244.  https://doi.org/10.1016/j.mprp.2015.08.077CrossRefGoogle Scholar
  127. 127.
    So KC, Fan Y, Sze L, Kwok KW, Chan AK, Cheung GS, Lee AP (2017) Using multimaterial 3-dimensional printing for personalized planning of complex structural heart disease intervention. JACC Cardiovasc Interv 10(11):e97–e98.  https://doi.org/10.1016/j.jcin.2017.02.045CrossRefGoogle Scholar
  128. 128.
    Marcus RP, Morris JM, Matsumoto JM, Alexander AE, Halaweish AF, Kelly JA, Fletcher JG, McCollough CH, Leng S (2017) Implementation of iterative metal artifact reduction in the pre-planning-procedure of three-dimensional physical modeling. 3D Print Med 3(5):8 pages.  https://doi.org/10.1186/s41205-017-0013-4
  129. 129.
    Leng S, McGee K, Morris J, Alexander A, Kuhlmann J, Vrieze T, McCollough CH, Matsumoto J (2017) Anatomic modeling using 3D printing: quality assurance and optimization. 3D Print Med 3(6).  https://doi.org/10.1186/s41205-017-0014-3
  130. 130.
    Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219:521–529.  https://doi.org/10.1038/sj.bdj.2015.914CrossRefGoogle Scholar
  131. 131.
    Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22(3):254–265.  https://doi.org/10.1016/j.molmed.2016.01.003CrossRefGoogle Scholar
  132. 132.
    Dodziuk H (2016) Applications of 3D printing in healthcare. Pol J Cardio Thorac Surg 13(3):283–293.  https://doi.org/10.5114/kitp.2016.62625CrossRefGoogle Scholar
  133. 133.
    Ng W, Zhu L, Law H, Niyomsriskul N (2017) 3D printing. Ipsos Business Consulting. https://www.ipsos.com/sites/default/files/2017-01/Ipsos-Business-Consulting-3D-Printing.pdf. Accessed 27 Jul 2017Google Scholar
  134. 134.
    Shivali (2016) World’s first 3D printed plane unveiled: Airbus’ windowless ‘Thor’ aircraft could pave the way for cheaper and faster flights. DailyMail. http://www.dailymail.co.uk/sciencetech/article-3627187/World-s-3D-printed-plane-unveiled-Airbus-windowless-Thor-aircraft-pave-way-cheaper-faster-flights.html. Accessed 27 Jul 2017
  135. 135.
    Mitrus M, Wojtowicz A, Moscicki L (2009) Biodegradable polymers and their practical utility (chapter 1). In: Janssen L, Moscicki L (eds) Thermoplastic starch: a green material for various industries. John Wiley & Sons, Weinheim, pp 1–34Google Scholar
  136. 136.
    Negoro S (2000) Biodegradation of nylon oliomers. Apply Microbiol Biotechnol 54:461–466.  https://doi.org/10.1007/s002530000434CrossRefGoogle Scholar
  137. 137.
    Negoro S (2005) Biodegradation of nylon and other synthetic polyamides. In: Biopolymers online. Wiley, WeinheimGoogle Scholar
  138. 138.
    Negoro S, Kakudo S, Okada H (1992) A new nylon oligomer degradation gene (nylC) on plasmid pOAD2 from a Flavobacterium sp. J Bacteriol 174:7948–7953.  https://doi.org/10.1128/jb.174.24.7948-7953.1992CrossRefGoogle Scholar
  139. 139.
    Opperman FB, Pickartz S, Steinbuchel A (1998) Biodegradation of polyamides. Polym Degrad Stab 59:337–344.  https://doi.org/10.1016/S0141-3910(97)00175-4CrossRefGoogle Scholar
  140. 140.
    Deguchi T, Kitaoka Y, Kakezawa M, Nishida T (1998) Purification and characterization of a nylon-degrading enzyme. Appl Environ Microbiol 64(4):1366–1371Google Scholar
  141. 141.
    Shama G, Wase DAJ (1981) The biodegradation of ε-caprolactam and some related compounds: a review. Int Biodeterioration Bull 17:1–16Google Scholar
  142. 142.
    Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F (2012) Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl Chem 84(2):377–410.  https://doi.org/10.1351/PAC-REC-10-12-04CrossRefGoogle Scholar
  143. 143.
    Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742.  https://doi.org/10.3390/ijms10093722CrossRefGoogle Scholar
  144. 144.
    Tomita K, Ikeda N, Ueno A (2003) Isolation and characterization of a thermophilic bacterium, Geobacillus thermocatenulatus, degrading nylon 12 and nylon 66. Biotechnol Lett 25:1743–1746.  https://doi.org/10.1023/A:1026091711130CrossRefGoogle Scholar
  145. 145.
    Sudhakar M, Priyadarshini C, Doble M, Murthy PS, Venkatesan R (2007) Marine bacteria mediated degradation of nylon 66 and 6. Int Biodeterior Biodegradation 60(3):144–151.  https://doi.org/10.1016/j.ibiod.2007.02.002CrossRefGoogle Scholar
  146. 146.
    Deguchi T, Kakezawa M, Nishida T (1997) Nylon biodegradation by lignin-degrading fungi. Appl Environ Microbiol 63:329–331Google Scholar
  147. 147.
    Nomura N, Deguchi T, Shigeno-Akutsu Y, Nakajima-Kambe T, Nakahara T (2001) Gene structures and catalytic mechanisms of microbial enzymes able to biodegrade the synthetic solid polymers nylon and polyester polyurethane. Biotechnol Genet Eng Rev 18:125–147.  https://doi.org/10.1080/02648725.2001.10648011CrossRefGoogle Scholar
  148. 148.
    Tomita K, Hayashi N, Ikeda N, Kikuchi Y (2003) Isolation of a thermophilic bacterium degrading some nylons. Polym Degrad Stab 81:511–514.  https://doi.org/10.1016/S0141-3910(03)00151-4CrossRefGoogle Scholar
  149. 149.
    Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276-277(1):1–24.  https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-WCrossRefGoogle Scholar
  150. 150.
    Shonnard D, Lindner A, Nguyen N, Ramachandran PA, Fichana D, Hesketh R, Slater CS, Engler R (2012) Green engineering-integration of green chemistry, pollution prevention, and risk-based considerations. In: Kent JA (ed) Handbook of industrial chemistry and biotechnology, vol 1. Springer, New York, pp 155–199CrossRefGoogle Scholar
  151. 151.
    Rydz J, Zawidlak-Węgrzyńska B, Christova D (2015) Degradable polymers. In: Mishra MK (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. CRC Press, Boca Raton, pp 2327–2349CrossRefGoogle Scholar
  152. 152.
    Rydz J, Musioł M, Kowalczuk M (2017) Polymers tailored for controlled (bio)degradation through end-group and in-chain functionalization. Curr Org Synth 14(6).  https://doi.org/10.2174/1570179414666161115151634
  153. 153.
    Winnacker M, Rieger B (2016) Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications. Polym Chem 7:7039–7046.  https://doi.org/10.1039/C6PY01783ECrossRefGoogle Scholar
  154. 154.
    Toncheva-Moncheva N, Jerome R, Mateva R (2016) Impact of the structure of poly(ε-caprolactam) containing polyesteramides on mechanical properties and biodegradation. Polym Degrad Stab 123:170–177.  https://doi.org/10.1016/j.polymdegradstab.2015.11.023CrossRefGoogle Scholar
  155. 155.
    Narayan R (2008) Bioplastics or biobased (renewable) plastic materials 101 in Q & A format. https://knowledge.ulprospector.com/1338/pe-bioplastics-biobased-narayan/. Accessed 28 Jul 2017
  156. 156.
    (2016) Nylon Resins. Chemical Economics Handbook. https://www.ihs.com/products/nylon-resins-chemical-economics-handbook.html. Accessed 28 Jul 2017
  157. 157.
    Klun U, Friedrich J, Kržan A (2003) Polyamide-6 fibre degradation by a lignolytic fungus. Polym Degrad Stab 79(1):99–104.  https://doi.org/10.1016/S0141-3910(02)00260-4CrossRefGoogle Scholar
  158. 158.
    Irfan D, Prijambada ID, Negro S, Yomo T, Urabe I (1995) Emergence of nylon oligomer degradation enzymes in Pseudomonas Aeruginosa PAO through experimental evolution. Appl Environ Microbiol 61:2020–2022Google Scholar
  159. 159.
    Kanagawa K, Oishi M, Negoro S, Urabe I, Okada H (1993) Characterization of the 6-aminohexanoate-dimer hydrolase from pseudomonas sp. NK87. J Gen Microbiol 139:787–795.  https://doi.org/10.1099/00221287-139-4-787CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mariya Kyulavska
    • 1
  • Natalia Toncheva-Moncheva
    • 1
  • Joanna Rydz
    • 2
    Email author
  1. 1.Bulgarian Academy of SciencesInstitute of PolymersSofiaBulgaria
  2. 2.Centre of Polymer and Carbon MaterialsPolish Academy of SciencesZabrzePoland

Personalised recommendations