Advertisement

Polysaccharides as Eco-nanomaterials for Agricultural Applications

  • Danila Merino
  • Claudia Casalongué
  • Vera A. AlvarezEmail author
Reference work entry

Abstract

The great growth of the world population, climate change, and environmental issues related to the accumulation of pesticides and fertilizers are the main problems facing the agricultural sector. To provide solutions, new innovative developments committed to caring for the environment are required. Nanotechnology has demonstrated great potential to provide new solutions to the many challenges faced by other sectors including agriculture.

The aim of this work was to carry out an updated version of the problems facing the current agricultural sector and show how polysaccharide based eco-nanomaterials might represent a promising solution. Polysaccharide applications for the controlled release of agrochemicals and promotion of plant growth are discussed. Finally, legal aspects on the development of these types of composite materials and their commercial insertion are studied.

Keywords

Nanoparticles Polymers Agrochemicals Polysaccharides Chitosan Alginate Regulations 

References

  1. 1.
    Binford LR (1968) Post-pleistocene adaptations. In: SR and LR Binford (eds) New Perspectives in Archaeology. Aldine Press, Chicago, pp 314–341Google Scholar
  2. 2.
    Campos EVR, de Oliveira JL, Fraceto LF, Singh B (2015) Polysaccharides as safer release systems for agrochemicals. Agron Sustain Dev 35:47–66.  https://doi.org/10.1007/s13593-014-0263-0CrossRefGoogle Scholar
  3. 3.
    Food and Agriculture Organization of the United Nations (2017) Food and Agriculture: Driving action across the 2030 Agenda for Sustainable DevelopmentGoogle Scholar
  4. 4.
    Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2016) Understanding the role of nanomaterials in agriculture. In: Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi, pp 271–288CrossRefGoogle Scholar
  5. 5.
    Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles: the next generation technology for sustainable agriculture. In: Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi, pp 289–300CrossRefGoogle Scholar
  6. 6.
    Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71.  https://doi.org/10.2147/NSA.S39409CrossRefGoogle Scholar
  7. 7.
    Wang P, Lombi E, Zhao F-J, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712.  https://doi.org/10.1016/j.tplants.2016.04.005CrossRefGoogle Scholar
  8. 8.
    Mitrus M, Wojtowicz A, Moscicki L (2009) Biodegradable polymers and their practical utility. In: Thermoplastic starch. Wiley, Weinheim, pp 1–33Google Scholar
  9. 9.
    Yang J, Han S, Zheng H et al (2015) Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydr Polym 123:53–66.  https://doi.org/10.1016/j.carbpol.2015.01.029CrossRefGoogle Scholar
  10. 10.
    Liu Z, Jiao Y, Wang Y et al (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662.  https://doi.org/10.1016/j.addr.2008.09.001CrossRefGoogle Scholar
  11. 11.
    Nitta S, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14:1629–1654.  https://doi.org/10.3390/ijms14011629CrossRefGoogle Scholar
  12. 12.
    Paques JP, van der Linden E, van Rijn CJM, Sagis LMC (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interf Sci 209:163–171.  https://doi.org/10.1016/j.cis.2014.03.009CrossRefGoogle Scholar
  13. 13.
    Bender ML, Komiyama M (1978) Cyclodextrin Chemistry-Reactivity and Structure, Concepts in Organic Chemistry Vol. 6 (Editors: K. Hafner, J.-M. Lehn, C. W. Rees, P. v. R. Schleyer, B. M. Trost and R, Zahradnik) (Cyclodextrin Chemistry. Reaktionsfähigkeit und Struktur, Konzepte der Organischen Chemie Bd. 6). Springer-Verlag, Berlin - Heidelberg - New York, pp 1–1Google Scholar
  14. 14.
    DeRosa MC, Monreal C, Schnitzer M et al (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91–91.  https://doi.org/10.1038/nnano.2010.2CrossRefGoogle Scholar
  15. 15.
    Kleine-Brueggeney H, Zorzi GK, Fecker T et al (2015) A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation. Colloids Surfaces B Biointerfaces 135:99–108.  https://doi.org/10.1016/j.colsurfb.2015.07.016CrossRefGoogle Scholar
  16. 16.
    Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649.  https://doi.org/10.1016/j.addr.2008.08.002CrossRefGoogle Scholar
  17. 17.
    Işiklan N (2006) Controlled release of insecticide carbaryl from sodium alginate, sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde. J Appl Polym Sci 99:1310–1319.  https://doi.org/10.1002/app.22012CrossRefGoogle Scholar
  18. 18.
    Yan H, Feng Y, Hu W et al (2013) Preparation and evaluation of alginate-chitosan-bentonite based beads for the delivery of pesticides in controlled-release formulation. Asian J Chem 25:9936–9940.  https://doi.org/10.14233/ajchem.2013.15671CrossRefGoogle Scholar
  19. 19.
    Inamdar N, Mourya VK (2010) Chitosan and anionic polymers – complex formation and applications. In: Tiwari A (ed) Polysaccharides: development, properties and applications. Nova Science Publishers, Inc, New York, pp 333–377Google Scholar
  20. 20.
    Naqvi S, Moerschbacher BM (2017) The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol 37:11–25.  https://doi.org/10.3109/07388551.2015.1104289CrossRefGoogle Scholar
  21. 21.
    Naqvi S, Cord-Landwehr S, Singh R et al (2016) A recombinant fungal chitin deacetylase produces fully defined chitosan oligomers with novel patterns of acetylation. Appl Environ Microbiol 82:6645–6655.  https://doi.org/10.1128/AEM.01961-16CrossRefGoogle Scholar
  22. 22.
    Hamer SN, Cord-Landwehr S, Biarnés X et al (2015) Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases. Sci Rep 5:8716.  https://doi.org/10.1038/srep08716CrossRefGoogle Scholar
  23. 23.
    Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17:996.  https://doi.org/10.3390/ijms17070996CrossRefGoogle Scholar
  24. 24.
    Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hortic (Amsterdam) 196:49–65.  https://doi.org/10.1016/j.scienta.2015.09.031CrossRefGoogle Scholar
  25. 25.
    Górnik K, Grzesik M, Romanowska-Duda B (2008) The effect of chitosan on rooting of grapevine cuttings and on subsequent plant growth under drought and temperature stress. J Fruit Ornam Plant Res 16:333–343Google Scholar
  26. 26.
    Iriti M, Varoni EM (2015) Chitosan-induced antiviral activity and innate immunity in plants. Environ Sci Pollut Res 22:2935–2944.  https://doi.org/10.1007/s11356-014-3571-7CrossRefGoogle Scholar
  27. 27.
    Hadwiger LA (1999) Host-parasite interactions: elicitation of defense responses in plants with chitosan. EXS 87:185–200Google Scholar
  28. 28.
    Rabea EI, Badawy ME-T, Stevens CV et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465.  https://doi.org/10.1021/BM034130MCrossRefGoogle Scholar
  29. 29.
    Sharp R (2013) A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3:757–793.  https://doi.org/10.3390/agronomy3040757CrossRefGoogle Scholar
  30. 30.
    Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63.  https://doi.org/10.1016/j.ijfoodmicro.2010.09.012CrossRefGoogle Scholar
  31. 31.
    Allan CR, Hadwiger LA (1979) The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp Mycol 3:285–287.  https://doi.org/10.1016/S0147-5975(79)80054-7CrossRefGoogle Scholar
  32. 32.
    Meng X, Yang L, Kennedy JF, Tian S (2010) Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym 81:70–75.  https://doi.org/10.1016/j.carbpol.2010.01.057CrossRefGoogle Scholar
  33. 33.
    Reglinski T, Elmer PAG, Taylor JT et al (2010) Inhibition of Botrytis Cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathol 59:882–890.  https://doi.org/10.1111/j.1365-3059.2010.02312.xCrossRefGoogle Scholar
  34. 34.
    Mansilla AY, Albertengo L, Rodríguez MS et al (2013) Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on pseudomonas syringae pv. Tomato DC3000. Appl Microbiol Biotechnol 97:6957–6966.  https://doi.org/10.1007/s00253-013-4993-8CrossRefGoogle Scholar
  35. 35.
    Li B, Wang X, Chen R et al (2008) Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia Pulcherrima. Carbohydr Polym 72:287–292.  https://doi.org/10.1016/j.carbpol.2007.08.012CrossRefGoogle Scholar
  36. 36.
    Terrile MC, Mansilla AY, Albertengo L et al (2015) Nitric-oxide-mediated cell death is triggered by chitosan in Fusarium eumartii spores. Pest Manag Sci 71:668–674.  https://doi.org/10.1002/ps.3814CrossRefGoogle Scholar
  37. 37.
    Kulikov SN, Chirkov SN, Il’ina AV et al (2006) Effect of the molecular weight of chitosan on its antiviral activity in plants. Prikl Biokhim Mikrobiol 42:224–228Google Scholar
  38. 38.
    Vander P, V rum KM, Domard A et al (1998) Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol 118:1353–1359CrossRefGoogle Scholar
  39. 39.
    Orzali L, Corsi B, Forni C, Riccioni L (2017) Chitosan in agriculture: a new challenge for managing plant disease. In: Biological activities and application of marine polysaccharides. InTech, Rijeka.  https://doi.org/10.5772/66840CrossRefGoogle Scholar
  40. 40.
    Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51.  https://doi.org/10.1016/j.ijbiomac.2015.02.039CrossRefGoogle Scholar
  41. 41.
    Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867.  https://doi.org/10.1080/10643389.2012.671750CrossRefGoogle Scholar
  42. 42.
    Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Nanotechnology and plant sciences. Springer, Cham, pp 19–35Google Scholar
  43. 43.
    Cota-Arriola O, Onofre Cortez-Rocha M, Burgos-Hernández A et al (2013) Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. J Sci Food Agric 93:1525–1536.  https://doi.org/10.1002/jsfa.6060CrossRefGoogle Scholar
  44. 44.
    Quiñones JP, García YC, Curiel H, Covas CP (2010) Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydr Polym 80:915–921.  https://doi.org/10.1016/j.carbpol.2010.01.006CrossRefGoogle Scholar
  45. 45.
    Grillo R, Pereira AES, Nishisaka CS et al (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171.  https://doi.org/10.1016/j.jhazmat.2014.05.079CrossRefGoogle Scholar
  46. 46.
    Rodrigues Maruyama C, Guilger M, Pascoli M et al (2016) Corrigendum: nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Reports 6:23854.  https://doi.org/10.1038/srep23854CrossRefGoogle Scholar
  47. 47.
    Maruyama CR, Guilger M, Pascoli M et al (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:19768.  https://doi.org/10.1038/srep19768CrossRefGoogle Scholar
  48. 48.
    Nguyen Van S, Dinh Minh H, Nguyen Anh D (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol 2:289–294.  https://doi.org/10.1016/j.bcab.2013.06.001CrossRefGoogle Scholar
  49. 49.
    Kheiri A, Moosawi Jorf SA, Malihipour A et al (2017) Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat. Int J Biol Macromol 102:526–538.  https://doi.org/10.1016/j.ijbiomac.2017.04.034CrossRefGoogle Scholar
  50. 50.
    Kheiri A, Moosawi Jorf SA, Malihipour A et al (2016) Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int J Biol Macromol 93:1261–1272.  https://doi.org/10.1016/j.ijbiomac.2016.09.072CrossRefGoogle Scholar
  51. 51.
    Chandra S, Chakraborty N, Dasgupta A et al (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195.  https://doi.org/10.1038/srep15195CrossRefGoogle Scholar
  52. 52.
    Bolouri Moghaddam MR, Van den Ende W (2013) Sweet immunity in the plant circadian regulatory network. J Exp Bot 64:1439–1449.  https://doi.org/10.1093/jxb/ert046CrossRefGoogle Scholar
  53. 53.
    Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329.  https://doi.org/10.1038/nature05286CrossRefGoogle Scholar
  54. 54.
    Yin H, Du Y, Dong Z (2016) Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Front Plant Sci 7:522.  https://doi.org/10.3389/fpls.2016.00522CrossRefGoogle Scholar
  55. 55.
    Guo W, Yin H, Ye Z et al (2012) A comparison study on the interactions of two oligosaccharides with tobacco cells by time-resolved fluorometric method. Carbohydr Polym 90:491–495.  https://doi.org/10.1016/j.carbpol.2012.05.070CrossRefGoogle Scholar
  56. 56.
    Bonin CP, Freshour G, Hahn MG et al (2003) The GMD1 and GMD2 genes of Arabidopsis encode isoforms of GDP-D-mannose 4,6-dehydratase with cell type-specific expression patterns. Plant Physiol 132(2):883–892CrossRefGoogle Scholar
  57. 57.
    Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807.  https://doi.org/10.1105/tpc.8.10.1793CrossRefGoogle Scholar
  58. 58.
    Petutschnig EK, Jones AME, Serazetdinova L et al (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911.  https://doi.org/10.1074/jbc.M110.116657CrossRefGoogle Scholar
  59. 59.
    Kaku H, Nishizawa Y, Ishii-Minami N et al (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091.  https://doi.org/10.1073/pnas.0508882103CrossRefGoogle Scholar
  60. 60.
    Cabrera JC, Messiaen J, Cambier P, Van Cutsem P (2006) Size, acetylation and concentration of chitooligosaccharide elicitors determine the switch from defence involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions. Physiol Plant 127:44–56.  https://doi.org/10.1111/j.1399-3054.2006.00677.xCrossRefGoogle Scholar
  61. 61.
    Manjunatha G, Niranjan-Raj S, Prashanth GN et al (2009) Nitric oxide is involved in chitosan-induced systemic resistance in pearl millet against downy mildew disease. Pest Manag Sci 65:737–743.  https://doi.org/10.1002/ps.1710CrossRefGoogle Scholar
  62. 62.
    Amborabe B-E, Bonmort J, Fleurat-Lessard P, Roblin G (2008) Early events induced by chitosan on plant cells. J Exp Bot 59:2317–2324.  https://doi.org/10.1093/jxb/ern096CrossRefGoogle Scholar
  63. 63.
    Raho N, Ramirez L, Lanteri ML et al (2011) Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J Plant Physiol 168:534–539.  https://doi.org/10.1016/j.jplph.2010.09.004CrossRefGoogle Scholar
  64. 64.
    Malerba M, Cerana R (2015) Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells. Int J Mol Sci 16:3019–3034.  https://doi.org/10.3390/ijms16023019CrossRefGoogle Scholar
  65. 65.
    Zhang H, Zhao X, Yang J et al (2011) Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide. Plant Cell Rep 30:1153–1162.  https://doi.org/10.1007/s00299-011-1024-zCrossRefGoogle Scholar
  66. 66.
    Singh S (2016) Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique. Food Chem 199:176–184.  https://doi.org/10.1016/j.foodchem.2015.11.127CrossRefGoogle Scholar
  67. 67.
    Yin H, Fretté XC, Christensen LP, Grevsen K (2012) Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. Hirtum). J Agric Food Chem 60:136–143.  https://doi.org/10.1021/jf204376jCrossRefGoogle Scholar
  68. 68.
    Povero G, Loreti E, Pucciariello C et al (2011) Transcript profiling of chitosan-treated Arabidopsis seedlings. J Plant Res 124:619–629.  https://doi.org/10.1007/s10265-010-0399-1CrossRefGoogle Scholar
  69. 69.
    Ramonell KM, Zhang B, Ewing RM et al (2002) Microarray analysis of chitin elicitation in Arabidopsis thaliana. Mol Plant Pathol 3:301–311.  https://doi.org/10.1046/j.1364-3703.2002.00123.xCrossRefGoogle Scholar
  70. 70.
    Yin H, Li S, Zhao X et al (2006) cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiol Biochem 44:910–916.  https://doi.org/10.1016/j.plaphy.2006.10.002CrossRefGoogle Scholar
  71. 71.
    Malerba M, Crosti P, Cerana R (2012) Defense/stress responses activated by chitosan in sycamore cultured cells. Protoplasma 249:89–98.  https://doi.org/10.1007/s00709-011-0264-7CrossRefGoogle Scholar
  72. 72.
    Xoca-Orozco L-Á, Cuellar-Torres EA, González-Morales S et al (2017) Transcriptomic analysis of avocado hass (Persea americana Mill) in the interaction system fruit-chitosan-colletotrichum. Front Plant Sci 8:956.  https://doi.org/10.3389/fpls.2017.00956CrossRefGoogle Scholar
  73. 73.
    Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62:362–374.  https://doi.org/10.1016/j.addr.2009.11.008CrossRefGoogle Scholar
  74. 74.
    Künzli N, Tager IB (2005) Air pollution: from lung to heart. Swiss Med Wkly 135:697–702.  https://doi.org/10.2005/47/smw-11025CrossRefGoogle Scholar
  75. 75.
    Ramachann G (2016) Assessing nanoparticle risks to human health. eBook ISBN: 9780323354080. pp. 1–286Google Scholar
  76. 76.
    Marrani D (2013) Nanotechnologies and novel foods in European law. NanoEthics 7:177–188.  https://doi.org/10.1007/s11569-013-0176-4CrossRefGoogle Scholar
  77. 77.
    Chaudhry Q, Watkins R, Castle L (2010) Nanotechnologies in Food. The Royal Society of Chemistry, London.  https://doi.org/10.1039/9781847559883CrossRefGoogle Scholar
  78. 78.
    Cushen M, Kerry J, Morris M et al (2012) Nanotechnologies in the food industry e recent developments, risks and regulation. Trends Food Sci Technol 24:30–46.  https://doi.org/10.1016/j.tifs.2011.10.006CrossRefGoogle Scholar
  79. 79.
    Hellsten E (2005) Nanosciences and Nanosciences and nanotechnologies: nanotechnologies: An Action Plan for An Action Plan for EuropeGoogle Scholar
  80. 80.
    Amenta V, Aschberger K, Arena M et al (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73:463–476.  https://doi.org/10.1016/j.yrtph.2015.06.016CrossRefGoogle Scholar
  81. 81.
    Bowman DM, van Calster G, Friedrichs S (2010) Nanomaterials and regulation of cosmetics. Nat Nanotechnol 5(2):92–92.CrossRefGoogle Scholar
  82. 82.
    European Commission (2004) Towards a European Strategy for NanotechnologyGoogle Scholar
  83. 83.
    European Commission (2005) Nanosciences and nanotechnologies: An action plan for EuropeGoogle Scholar
  84. 84.
    Dorbeck-Jung B, Shelley-Egan C (2013) Meta-regulation and nanotechnologies: the challenge of responsibilisation within the European Commission’s code of conduct for responsible nanosciences and nanotechnologies research. NanoEthics 7:55–68.  https://doi.org/10.1007/s11569-013-0172-8CrossRefGoogle Scholar
  85. 85.
    Lidén G (2011) The European commission tries to define nanomaterials. Ann Occup Hyg 55:1–5.  https://doi.org/10.1093/annhyg/meq092CrossRefGoogle Scholar
  86. 86.
    EFSA Scientific Committee (2011) Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J 9:2140.  https://doi.org/10.2903/j.efsa.2011.2140CrossRefGoogle Scholar
  87. 87.
    Milani N, McLaughlin MJ, Stacey SP et al (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60:3991–3998.  https://doi.org/10.1021/jf205191yCrossRefGoogle Scholar
  88. 88.
    BASF BASF SE, Ludwigshafen – Chemical park – Germany. https://chemicalparks.eu/parks/basf-se-ludwigshafen. Accessed 12 Jul 2017
  89. 89.
    Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853.  https://doi.org/10.1016/j.bios.2006.11.024CrossRefGoogle Scholar
  90. 90.
    Nestlé (2017) Homepage | NESTLÉ® USA. http://www.nestleusa.com/. Accessed 12 Jul 2017
  91. 91.
    University C (2017) Cornell University. https://www.cornell.edu/. Accessed 12 Jul 2017
  92. 92.
    Kyoto University (2017) Kyoto University. http://www.kyoto-u.ac.jp/en. Accessed 12 Jul 2017
  93. 93.
    Geohumus GmbH (2017) Home – Geohumus GmbH. http://www.geohumus.com/en/. Accessed 12 Jul 2017
  94. 94.
    Anjali C, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion – a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163.  https://doi.org/10.1002/ps.2233CrossRefGoogle Scholar
  95. 95.
    McMurray TA, Dunlop PSM, Byrne JA (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photochem Photobiol A Chem 182:43–51.  https://doi.org/10.1016/j.jphotochem.2006.01.010CrossRefGoogle Scholar
  96. 96.
    Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300.  https://doi.org/10.1038/nnano.2007.108CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Danila Merino
    • 1
  • Claudia Casalongué
    • 2
  • Vera A. Alvarez
    • 1
    Email author
  1. 1.Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.Grupo de Fisiología del Estrés en Plantas, Instituto de Investigaciones Biológicas (IIB)Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations