Advertisement

Metal Hydrides for Energy Storage

  • Marina G. ShelyapinaEmail author
Reference work entry

Abstract

Problem of hydrogen storage is a key point for the extensive use of hydrogen as an energy carrier. Metal hydrides provide a safe and very often reversible way to store energy that can be accessed after hydrogen release and its further oxidation. To be economically feasible, the metal or alloy used for hydrogen storage has to exhibit high hydrogen storage capacity, low temperature of the hydrogen release, and be low cost. Unfortunately, among many metals and alloys reacting with hydrogen, there is no such a material that meets all the necessary criteria. In recent years, many efforts have been made aiming to optimize the characteristics of metal hydrides for energy storage, and this chapter provides a brief review of the most important achievements in this field.

References

  1. 1.
    Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30:809–819.  https://doi.org/10.1016/j.ijhydene.2005.02.003CrossRefGoogle Scholar
  2. 2.
    Dincer I (2012) Green methods for hydrogen production. Int J Hydrog Energy 37:1954–1971.  https://doi.org/10.1016/j.ijhydene.2011.03.173CrossRefGoogle Scholar
  3. 3.
    Dincer I, Acar C (2014) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrog Energy 40:11094–11111.  https://doi.org/10.1016/j.ijhydene.2014.12.035CrossRefGoogle Scholar
  4. 4.
    Lang Y, Arnepalli RR, Tiwari A (2011) A review on hydrogen production: Methods, materials and nanotechnology. J Nanosci Nanotechnol 11:3719–3739.  https://doi.org/10.1166/jnn.2011.4157CrossRefGoogle Scholar
  5. 5.
    Barbir F (2005) PEM fuel cells. Theory and practice, Elsevier Academic, BurlingtonGoogle Scholar
  6. 6.
    Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl Energy 88:981–1007.  https://doi.org/10.1016/j.apenergy.2010.09.030CrossRefGoogle Scholar
  7. 7.
    Mench MM (2008) Fuel cell engines. Wiley, HobokenCrossRefGoogle Scholar
  8. 8.
    Studer S, Stucki S, Speight JD (2008) Hydrogen as a fuel. In: Züttel A, Borgschulte A, Schlapbach L (eds) Hydrogen as a future energy carrier. Wiley, Weinheim, pp 23–69CrossRefGoogle Scholar
  9. 9.
    Weitkamp J, Fritz M, Ernst S (1995) Zeolites as media for hydrogen storage. Int J Hydrog Energy 20:967–970.  https://doi.org/10.1016/0360-3199(95)00058-LCrossRefGoogle Scholar
  10. 10.
    Anderson PA (2008) Storage of hydrogen in zeolites. In: Walker G (ed) Solid-State Hydrogen Storage: Materials and Chemistry, Series in Electronic and Optical Materials. Woodhead Publishing, Cambridge, pp 223–260CrossRefGoogle Scholar
  11. 11.
    Kabbour H, Baumann T, Satcher J, Saulnier A, Ahn C (2006) Toward new candidates for hydrogen storage: High surface area carbon aerogels. Chem Mater 18:6085–6087.  https://doi.org/10.1021/cm062329aCrossRefGoogle Scholar
  12. 12.
    Jin Z, Sun Z, Simpson LJ, O’Neill KJ, Parilla PA, Li Y, Stadie NP, Ahn CC, Kittrell C, Tour JM (2010) Solution-phase synthesis of heteroatom-substituted carbon scaffolds for hydrogen storage. J Am Chem Soc 132:15246–15251.  https://doi.org/10.1021/ja105428dCrossRefGoogle Scholar
  13. 13.
    Stadie NP, Vajo JJ, Cumberland RW, Wilson AA, Ahn CC, Fultz B (2012) Zeolite-templated carbon materials for high-pressure hydrogen storage. Langmuir 28:10057–10063.  https://doi.org/10.1021/la302050mCrossRefGoogle Scholar
  14. 14.
    Guo CX, Wang Y, Li CM (2013) Hierarchical graphene-based material for over 4.0 wt % physisorption hydrogen storage capacity. ACS Sustain Chem Eng 1:14–18.  https://doi.org/10.1021/ja105428dCrossRefGoogle Scholar
  15. 15.
    Jiang H-L, Liu B, Lan Y-Q, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) From metal–organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J Am Chem Soc 133:11854–11857.  https://doi.org/10.1021/ja203184kCrossRefGoogle Scholar
  16. 16.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444–1230444.  https://doi.org/10.1126/science.1230444CrossRefGoogle Scholar
  17. 17.
    Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang JG, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220.  https://doi.org/10.1016/j.nanoen.2011.11.006CrossRefGoogle Scholar
  18. 18.
    Zhou L, Zhou Y, Sun Y (2004) Enhanced storage of hydrogen at the temperature of liquid nitrogen. Int J Hydrog Energy 29:319–322.  https://doi.org/10.1016/S0360-3199(03)00155-1CrossRefGoogle Scholar
  19. 19.
    Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562.  https://doi.org/10.1038/nnano.2014.93CrossRefGoogle Scholar
  20. 20.
    Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132.  https://doi.org/10.1021/cr0501846CrossRefGoogle Scholar
  21. 21.
    Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: A review. Int J Hydrog Energy 32:1121–1140.  https://doi.org/10.1016/j.ijhydene.2006.11.022CrossRefGoogle Scholar
  22. 22.
    Jain IP, Jain P, Jain A (2010) Novel hydrogen storage materials: A review of lightweight complex hydridespuye. J Alloys Compd 503:303–339.  https://doi.org/10.1016/j.jallcom.2010.04.250CrossRefGoogle Scholar
  23. 23.
    Xiong Z, Yong CK, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones MO, Johnson SR, Edwards PP, David WIF (2008) High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater 7:138–141.  https://doi.org/10.1038/nmat2081CrossRefGoogle Scholar
  24. 24.
    Safronov AV, Jalisatgi SS, Lee HB, Hawthorne MF (2011) Chemical hydrogen storage using polynuclear borane anion salts. Int J Hydrog Energy 36:234–239.  https://doi.org/10.1016/j.ijhydene.2010.08.120CrossRefGoogle Scholar
  25. 25.
    Lan R, Irvine JTS, Tao S (2012) Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrog Energy 37:1482–1494.  https://doi.org/10.1016/j.ijhydene.2011.10.004CrossRefGoogle Scholar
  26. 26.
    Demirci UB (2017) Ammonia borane, a material with exceptional properties for chemical hydrogen storage. Int J Hydrog Energy 42:9978–10013.  https://doi.org/10.1016/j.ijhydene.2017.01.154CrossRefGoogle Scholar
  27. 27.
    Wietelmann U, Felderhoff M, Rittmeyer P (2000) Hydrides. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim, pp 1–39Google Scholar
  28. 28.
    Züttel A, Hirscher M, Panella B, Yvon K, Orimo S, Bogdanović B, Felderhoff M, Schüth F, Borgschulte A, Goetze S, Suda S, Kelly MT (2008) Hydrogen storage. In: Züttel A, Borgschulte A, Schlapbach L (eds) Hydrogen as a future energy carrier. Wiley, Weinheim, pp 165–263CrossRefGoogle Scholar
  29. 29.
    Christmann K (1988) Interaction of hydrogen with solid surfaces. Surf Sci Rep 9:1–163.  https://doi.org/10.1016/0167-5729(88)90009-XCrossRefGoogle Scholar
  30. 30.
    Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220.  https://doi.org/10.1016/0039-6028(96)80007-0CrossRefGoogle Scholar
  31. 31.
    Groß A (1998) Reactions at surfaces studied by ab initio dynamics calculations. Surface Sci Rep 32(8):291–340CrossRefGoogle Scholar
  32. 32.
    Kroes GJ, Gross A, Baerends EJ, Scheffler M, McCormack DA (2002) Quantum theory of dissociative chemisorption on metal surfaces. Acc Chem Res 35:193–200.  https://doi.org/10.1021/ar010104uCrossRefGoogle Scholar
  33. 33.
    Ferrin P, Kandoi S, Nilekar AU, Mavrikakis M (2012) Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surf Sci 606:679–689.  https://doi.org/10.1016/j.susc.2011.12.017CrossRefGoogle Scholar
  34. 34.
    Sandrock G (1999) Panoramic overview of hydrogen storage alloys from a gas reaction point of view. J Alloys Compd 293:877–888.  https://doi.org/10.1016/S0925-8388(99)00384-9CrossRefGoogle Scholar
  35. 35.
    Völkl J, Alefeld G (1978) Diffusion of hydrogen in metals. In: Alefeld G, Völkl J (eds) Hydrogen in Metals I: Basic Properties. Springer, Berlin/Heidelberg, pp 321–348CrossRefGoogle Scholar
  36. 36.
    Fukai Y (2005) The metal-hydrogen system. Basic bulk properties. Springer, Berlin/HeidelbergGoogle Scholar
  37. 37.
    Peisl H (1978) Lattice strains due to hydrogen in metals. In: Alefeld G, Völkl J (eds) Hydrogen in Metals I: Basic Properties. Springer, Berlin/Heidelberg, pp 53–74CrossRefGoogle Scholar
  38. 38.
    Glushko Thermocenter of the Russian Academy of Sciences (1994) IHED, “IVTAN” Association of RAS, Izhorskaya 13/19, Moscow 127412, RussiaGoogle Scholar
  39. 39.
    Landolt-Börnstein - Group IV Physical chemistry (2001) Vol. 19A4. Thermodynamic properties of inorganic materials. Pure substances. Part 4 _ Compounds from HgH_g to ZnTe_g. Springer, Berlin/HeidelbergGoogle Scholar
  40. 40.
    Landolt-Börnstein - Group IV Physical Chemistry (2001) Vol. 19A4. Thermodynamic properties of inorganic materials. Pure substances. Part 4 _ Compounds from HgH_g to ZnTe_g. Springer, Berlin/HeidelbergGoogle Scholar
  41. 41.
    Landolt-Börnstein - Group IV Physical chemistry (2000) Vol. 19A3. Thermodynamic properties of inorganic materials. Pure substances. Part 3 _ Compounds from CoCl3_g to Ge3N4. Springer, Berlin/HeidelbergGoogle Scholar
  42. 42.
    Landolt-Börnstein - Group IV Physical Chemistry (1999) Vol. 19A2. Thermodynamic properties of inorganic materials. Pure substances. Part 2 _ Compounds from BeBr_g to ZrCl2_g. Springer, Berlin/HeidelbergGoogle Scholar
  43. 43.
    Treadwell WD, Sticher J (1953) Über den Wasserstoffdruck von Calciumhydrid. Helv Chim Acta 36:1820–1832CrossRefGoogle Scholar
  44. 44.
    Landolt-Börnstein - Group IV Physical chemistry (1999) Vol. 19A1. Thermodynamic properties of inorganic materials. Pure substances. Part 1 _ Elements and compounds from AgBr to Ba3N2. Springer, Berlin/HeidelbergGoogle Scholar
  45. 45.
    Fromm E, Hörz G (1980) Hydrogen, nitrogen, oxygen, and carbon in metals. Int Met Rev 25:269–311.  https://doi.org/10.1179/imtr.1980.25.1.269CrossRefGoogle Scholar
  46. 46.
    Knacke O, Kubaschewski O, Hesselmann K (1991) Thermochemical properties of inorganic substances, 2nd edn. Springer, BerlinGoogle Scholar
  47. 47.
    Knacke O, Kubaschewski O, Hesselmann K (1991) Thermochemical properties of inorganic substances, 2nd edn. Springer, BerlinGoogle Scholar
  48. 48.
    Stull DR, Prophet H (1971) JANAF thermochemical tables, 2nd NSRDS ed. U.S. Gov Printing Office, Washington, DCGoogle Scholar
  49. 49.
    Wenzl H (1982) Properties and applications of metal hydrides in energy conversion systems. Int Met Rev 27:140–168.  https://doi.org/10.1179/imr.1982.27.1.140CrossRefGoogle Scholar
  50. 50.
    Driessen A, Hemmes H, Griessen R (1985) Hydride formation at very high hydrogen pressure. Z Phys Chem 143:145–159.  https://doi.org/10.1524/zpch.1985.143.143.145CrossRefGoogle Scholar
  51. 51.
    Lässer R, Klatt KH (1983) Solubility of hydrogen isotopes in palladium. Phys Rev B 28:748–758.  https://doi.org/10.1103/PhysRevB.28.748CrossRefGoogle Scholar
  52. 52.
    Landolt-Börnstein - Group IV Physical Chemistry (1999) Vol. 19A2. Thermodynamic properties of inorganic materials. Pure substances. Part 2 _ Compounds from BeBr_g to ZrCl2_g. Springer, Berlin/HeidelbergGoogle Scholar
  53. 53.
    Behrens H, Ebel G (1981) Gases and carbon in metals. In: Physics Data, Bd. Fachinformationszentrum Energie, Physik, Mathematik, Karlsruhe, pp 5–14Google Scholar
  54. 54.
    Libowitz GG, Maeland AJ (1979) Hydrides. In: Gschneidner KA, Eyring L (eds) Handbook on the Physies and Chemistry of Rare Earths, vol 3. North-Holland, Amsterdam, p 299Google Scholar
  55. 55.
    Barin I (1995) Thermochemical data of pure Substances, 3rd edn. Wiley, WeinheimCrossRefGoogle Scholar
  56. 56.
    THERMODATA (1993) Grenoble Campus, 1001 Avenue Centrale, BP 66, F-38402 Saint Martin d’Hères, FranceGoogle Scholar
  57. 57.
    Landolt-Börnstein - Group IV Physical Chemistry (1999) Vol. 19A1. Thermodynamic properties of inorganic materials. Pure substances. Part 1 _ Elements and Compounds from AgBr to Ba3N2. Springer, Berlin/HeidelbergGoogle Scholar
  58. 58.
    Huot J (2010) Metal hydrides. In: Hirscher M (ed) Handbook of hydrogen storage. Wiley, Weinheim, pp 675–747Google Scholar
  59. 59.
    Pundt A, Kirchheim R (2006) Hydrogen in metals: Microstructural aspects. Annu Rev Mater Res 36:555–608.  https://doi.org/10.1146/annurev.matsci.36.090804.094451CrossRefGoogle Scholar
  60. 60.
    Flanagan TB, Clewley JD (1982) Hysteresis in metal hydrides. J Less-Common Met 83:127–141.  https://doi.org/10.1016/0022-5088(82)90176-XCrossRefGoogle Scholar
  61. 61.
    Puls MP (1984) Elastic and plastic accommodation effects on metal-hydride solubility. Acta Metall 32:1259–1269.  https://doi.org/10.1016/0001-6160(84)90133-0CrossRefGoogle Scholar
  62. 62.
    Flanagan TB, Park C-N, Oates WA (1995) Hysteresis in solid state reactions. Prog Solid State Chem 23:291–363.  https://doi.org/10.1016/0079-6786(95)00006-GCrossRefGoogle Scholar
  63. 63.
    Balasubramaniam R (1997) Hysteresis in metal hydrogen systems. J Alloys Compd 253:203–206.  https://doi.org/10.1016/S0925-8388(96)02894-0CrossRefGoogle Scholar
  64. 64.
    Schwarz RB, Khachaturyan AG (1995) Thermodynamics of open two-phase systems with coherent interfaces. Phys Rev Lett 74:2523–2526CrossRefGoogle Scholar
  65. 65.
    Schwarz RB, Khachaturyan AG (2006) Thermodynamics of open two-phase systems with coherent interfaces: Application to metal-hydrogen systems. Acta Mater 54:313–323.  https://doi.org/10.1016/j.actamat.2005.08.044CrossRefGoogle Scholar
  66. 66.
    Larsen JW, Livesay BR (1980) Hydriding kinetics of SmCo5. J Less Common Met 73:79–88.  https://doi.org/10.1016/0022-5088(80)90345-8CrossRefGoogle Scholar
  67. 67.
    Shilov AL, Efremenko NE (1986) Effect of sloping pressure “plateau” in two-phase regions of hydride systems. Russ J Phys Chem 60:3024–3028Google Scholar
  68. 68.
    Fujitani BS, Nakamura H, Furukawa A, Nasako K, Satoh K, Saito T, Yonezu I (1993) A method for numerical expressions of P-C isotherms of hydrogen-absorbing alloys. Z Phys Chem 179:29–35.  https://doi.org/10.1524/zpch.1992.1.1.029CrossRefGoogle Scholar
  69. 69.
    Lototsky MV, Yartys VA, Marinin VS, Lototsky NM (2003) Modelling of phase equilibria in metal-hydrogen systems. J Alloys Compd 356–357:27–31.  https://doi.org/10.1016/S0925-8388(03)00095-1CrossRefGoogle Scholar
  70. 70.
    Park CN, Luo S, Flanagan TB (2004) Analysis of sloping plateaux in alloys and intermetallic hydrides I. Diagnostic features. J Alloys Compd 384:203–207.  https://doi.org/10.1016/j.jallcom.2004.04.138CrossRefGoogle Scholar
  71. 71.
    Salomons E, Griessen R, De Groot DG, Magerl A (1988) Surface tension and subsurface sites of metallic nanocrystals determined from H-absorption. Europhys Lett 5:449–454.  https://doi.org/10.1209/0295-5075/5/5/012CrossRefGoogle Scholar
  72. 72.
    Pundt A (2004) Hydrogen in nano-sized metals. Adv Eng Mater 6:11–21.  https://doi.org/10.1002/adem.200300557CrossRefGoogle Scholar
  73. 73.
    Shegai T, Langhammer C (2011) Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy. Adv Mater 23:4409–4414.  https://doi.org/10.1002/adma.201101976CrossRefGoogle Scholar
  74. 74.
    Chang B, Chen P, Liu BH, Li ZP, Wu J, Wang QD (1993) The activation mechanism of Mg-based hydrogen storage alloys. Z Phys Chem 181:259–267CrossRefGoogle Scholar
  75. 75.
    Zaluski L, Zaluska A, Ström-Olsen J (1997) Nanocrystalline metal hydrides. J Alloys Compd 253–254:70–79.  https://doi.org/10.1016/S0925-8388(96)02985-4CrossRefGoogle Scholar
  76. 76.
    Williams M, Lototsky MV, Linkov VM, Nechaev AN, Solberg JK, Yartys VA (2009) Nanostructured surface coatings for the improvement of AB5-type hydrogen storage intermetallics. Int J Energy Res 33:1171–1179.  https://doi.org/10.1002/er.1609CrossRefGoogle Scholar
  77. 77.
    Zhao B, Liu L, Ye Y, Hu S, Wu D, Zhang P (2016) Enhanced hydrogen capacity and absorption rate of LaNi4.25Al0.75 alloy in impure hydrogen by a combined approach of fluorination and palladium deposition. Int J Hydrog Energy 41:3465–3469.  https://doi.org/10.1016/j.ijhydene.2015.12.167CrossRefGoogle Scholar
  78. 78.
    Zaluska A, Zaluski L, Ström-Olsen JO (1999) Nanocrystalline magnesium for hydrogen storage. J Alloys Compd 288:217–225.  https://doi.org/10.1016/S0925-8388(99)00073-0CrossRefGoogle Scholar
  79. 79.
    Charbonnier J, De Rango P, Fruchart D, Miraglia S, Pontonnier L, Rivoirard S, Skryabina N, Vulliet P (2004) Hydrogenation of transition element additives (Ti, V) during ball milling of magnesium hydride. J Alloys Compd 383:205–208.  https://doi.org/10.1016/j.jallcom.2004.04.059CrossRefGoogle Scholar
  80. 80.
    Bouaricha S, Dodelet J-P, Guay D, Huot J, Schulz R (2011) Study of the activation process of Mg-based hydrogen storage materials modified by graphite and other carbonaceous compounds. J Mater Res 16:2893–2905.  https://doi.org/10.1557/JMR.2001.0398CrossRefGoogle Scholar
  81. 81.
    Jehan M, Fruchart D (2013) McPhy-Energy’s proposal for solid state hydrogen storage materials and systems. J Alloys Compd 580:S343–S348.  https://doi.org/10.1016/j.jallcom.2013.03.266CrossRefGoogle Scholar
  82. 82.
    Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J Alloys Compd 292:247–252.  https://doi.org/10.1016/S0925-8388(99)00442-9CrossRefGoogle Scholar
  83. 83.
    Shang CX, Bououdina M, Guo ZX (2003) Structural stability of mechanically alloyed (Mg+10Nb) and (MgH2+10Nb) powder mixtures. J Alloys Compd 349:217–223.  https://doi.org/10.1016/S0925-8388(02)00920-9CrossRefGoogle Scholar
  84. 84.
    Shang CX, Bououdina M, Song Y, Guo ZX (2004) Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. Int J Hydrog Energy 29:73–80.  https://doi.org/10.1016/S0360-3199(03)00045-4CrossRefGoogle Scholar
  85. 85.
    Rivoirard S, de Rango P, Fruchart D, Charbonnier J, Vempaire D (2003) Catalytic effect of additives on the hydrogen absorption properties of nano-crystalline MgH2(X) composites. J Alloys Compd 356–357:622–625.  https://doi.org/10.1016/S0925-8388(03)00145-2CrossRefGoogle Scholar
  86. 86.
    Oelerich W, Klassen T, Bormann R (2001) Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd 315:237–242.  https://doi.org/10.1016/S0925-8388(00)01284-6CrossRefGoogle Scholar
  87. 87.
    Aguey-Zinsou KF, Ares Fernandez JR, Klassen T, Bormann R (2007) Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrog Energy 32:2400–2407.  https://doi.org/10.1016/j.ijhydene.2006.10.068CrossRefGoogle Scholar
  88. 88.
    Song MY, Bobet JL, Darriet B (2002) Improvement in hydrogen sorption properties of Mg by reactive mechanical grinding with Cr2O3, Al2O3 and CeO2. J Alloys Compd 340:256–262.  https://doi.org/10.1016/S0925-8388(02)00019-1CrossRefGoogle Scholar
  89. 89.
    Floriano R, Leiva DR, Deledda S, Hauback BC, Botta WJ (2013) Cold rolling of MgH2 powders containing different additives. Int J Hydrog Energy 38:16193–16198.  https://doi.org/10.1016/j.ijhydene.2013.10.029CrossRefGoogle Scholar
  90. 90.
    Huot J, Liang G, Boily S, Van Neste A, Schulz R (1999) Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J Alloys Compd 293:495–500.  https://doi.org/10.1016/S0925-8388(99)00474-0CrossRefGoogle Scholar
  91. 91.
    Huot J, Ravnsbæk DB, Zhang J, Cuevas F, Latroche M, Jensen TR (2013) Mechanochemical synthesis of hydrogen storage materials. Prog Mater Sci 58:30–75.  https://doi.org/10.1016/j.pmatsci.2012.07.001CrossRefGoogle Scholar
  92. 92.
    Huot J, Skryabina NY, Fruchart D (2012) Application of severe plastic deformation techniques to magnesium for enhanced hydrogen sorption properties. Metals (Basel) 2:329–343.  https://doi.org/10.3390/met2030329CrossRefGoogle Scholar
  93. 93.
    Lima GF, Triques MRM, Kiminami CS, Botta WJ, Jorge AM (2014) Hydrogen storage properties of pure Mg after the combined processes of ECAP and cold-rolling. J Alloys Compd 586:S405–S408.  https://doi.org/10.1016/j.jallcom.2013.03.106CrossRefGoogle Scholar
  94. 94.
    Jain P, Lang J, Skryabina NY, Fruchart D, Santos SF, Binder K, Klassen T, Huot J (2013) MgH2 as dopant for improved activation of commercial Mg ingot. J Alloys Compd 575:364–369.  https://doi.org/10.1016/j.jallcom.2013.05.099CrossRefGoogle Scholar
  95. 95.
    Grill A, Horky J, Panigrahi A, Krexner G, Zehetbauer M (2015) Long-term hydrogen storage in Mg and ZK60 after severe plastic deformation. Int J Hydrog Energy 40:17144–17152.  https://doi.org/10.1016/j.ijhydene.2015.05.145CrossRefGoogle Scholar
  96. 96.
    Leiva DR, Fruchart D, Bacia M, Girard G, Skryabina N, Villela ACS, Miraglia S, Santos DS, Botta WJ (2009) Mg alloy for hydrogen storage processed by SPD. Int J Mater Res 100:1739–1746.  https://doi.org/10.3139/146.110225CrossRefGoogle Scholar
  97. 97.
    Kyoi D, Sato T, Rönnebro E, Kitamura N, Ueda A, Ito M, Katsuyama S, Hara S, Noréus D, Sakai T (2004) A new ternary magnesium-titanium hydride Mg7TiHx with hydrogen desorption properties better than both binary magnesium and titanium hydrides. J Alloys Compd 372:213–217.  https://doi.org/10.1016/j.jallcom.2003.08.098CrossRefGoogle Scholar
  98. 98.
    Kyoi D, Sato T, Rönnebro E, Tsuji Y, Kitamura N, Ueda A, Ito M, Katsuyama S, Hara S, Noréus D, Sakai T (2004) A novel magnesium-vanadium hydride synthesized by a gigapascal-high-pressure technique. J Alloys Compd 375:253–258.  https://doi.org/10.1016/j.jallcom.2003.11.150CrossRefGoogle Scholar
  99. 99.
    Sato T, Kyoi D, Rönnebro E, Kitamura N, Sakai T, Noréus D (2006) Structural investigations of two new ternary magnesium-niobium hydrides, Mg6.5NbH~14 and MgNb2H~4. J Alloys Compd 417:230–234.  https://doi.org/10.1016/j.jallcom.2005.08.068CrossRefGoogle Scholar
  100. 100.
    Kyoi D, Kitamura N, Tanaka H, Ueda A, Tanase S, Sakai T (2007) Hydrogen desorption properties of FCC super-lattice hydride Mg7NbHx prepared by ultra-high pressure techniques. J Alloys Compd 428:268–273.  https://doi.org/10.1016/j.jallcom.2006.02.073CrossRefGoogle Scholar
  101. 101.
    Kyoi D, Sakai T, Kitamura N, Ueda A, Tanase S (2008) Synthesis of FCC Mg-Ta hydrides using GPa hydrogen pressure method and their hydrogen-desorption properties. J Alloys Compd 463:306–310.  https://doi.org/10.1016/j.jallcom.2007.09.003CrossRefGoogle Scholar
  102. 102.
    Vermeulen P, Graat PCJ, Wondergem HJ, Notten PHL (2008) Crystal structures of MgyTi100-y thin film alloys in the as-deposited and hydrogenated state. Int J Hydrog Energy 33:5646–5650.  https://doi.org/10.1016/j.ijhydene.2008.07.014CrossRefGoogle Scholar
  103. 103.
    Song GL, Haddad D (2011) The topography of magnetron sputter-deposited Mg-Ti alloy thin films. Mater Chem Phys 125:548–552.  https://doi.org/10.1016/j.matchemphys.2010.10.018CrossRefGoogle Scholar
  104. 104.
    Iliescu I, Skryabina N, Fruchart D, Bes A, Lacoste A (2017) Morphology and microstructure of Mg-Ti-H films deposited by microwave plasma-assisted co-sputtering. J Alloys Compd 708:489–499.  https://doi.org/10.1016/j.jallcom.2017.03.044CrossRefGoogle Scholar
  105. 105.
    Zhou D-W, Peng P, Liu J-S, Chen L, Hu YJ (2006) First-principles study on structural stability of 3d transition metal alloying magnesium hydride. Trans Nonferrous Metals Soc China 16:23–32CrossRefGoogle Scholar
  106. 106.
    Siretskiy MY, Shelyapina MG, Fruchart D, Miraglia S, Skryabina NE (2009) Influence of a transition metal atom on the geometry and electronic structure of Mg and Mg-H clusters. J Alloys Compd 480:114–116.  https://doi.org/10.1016/j.jallcom.2008.10.040CrossRefGoogle Scholar
  107. 107.
    Shelyapina MG, Siretskiy MY (2010) Influence of 3d metal atoms on the geometry, electronic structure, and stability of a Mg13H26 cluster. Phys Solid State 52:1992–1998.  https://doi.org/10.1134/S1063783410090349CrossRefGoogle Scholar
  108. 108.
    Xiao XB, Zhang WB, Yu WY, Wang N, Tang BY (2009) Energetics and electronic properties of Mg7TMH16 (TM=Sc, Ti, V, Y, Zr, Nb): An ab initio study. Phys B Condens Matter 404:2234–2240.  https://doi.org/10.1016/j.physb.2009.04.013CrossRefGoogle Scholar
  109. 109.
    Shelyapina MG, Fruchart D, Wolfers P (2010) Electronic structure and stability of new FCC magnesium hydrides Mg7MH16 and Mg6MH16 (M = Ti, V, Nb): An ab initio study. Int J Hydrog Energy 35:2025–2032.  https://doi.org/10.1016/j.ijhydene.2009.12.171CrossRefGoogle Scholar
  110. 110.
    Novaković N, Grbović Novaković J, Matović L, Manasijević M, Radisavljević I, Paskaš Mamula B, Ivanović N (2010) Ab initio calculations of MgH2, MgH2:Ti and MgH2:Co compounds. Int J Hydrog Energy 35:598–608.  https://doi.org/10.1016/j.ijhydene.2009.11.003CrossRefGoogle Scholar
  111. 111.
    Shelyapina MG, Fruchart D, Miraglia S, Girard G (2011) Electronic structure and stability of Mg6TiM (M = Mg, Al, Zn) and their hydrides. Phys Solid State 53:6–12.  https://doi.org/10.1134/S1063783411010276CrossRefGoogle Scholar
  112. 112.
    Shelyapina MG, Pinyugzhanin VM, Skryabina NE, Hauback BC (2013) Electronic structure and stability of complex hydrides Mg2MHx (M = Fe, Co). Phys Solid State 55:12–20.  https://doi.org/10.1134/S1063783412120293CrossRefGoogle Scholar
  113. 113.
    Shelyapina MG, Fruchart D (2011) Role of transition elements in stability of magnesium hydride: A review of theoretical studies. Solid State Phenom 170:227–231.  https://doi.org/10.4028/www.scientific.net/SSP.170.227CrossRefGoogle Scholar
  114. 114.
    Pelletier JF, Huot J, Sutton M, Schulz R, Sandy AR, Lurio LB, Mochrie SGJ (2001) Hydrogen desorption mechanism in MgH2-Nb nanocomposites. Phys Rev B 63:52103-1–52103-4.  https://doi.org/10.1103/PhysRevB.63.052103CrossRefGoogle Scholar
  115. 115.
    de Rango P, Chaise A, Charbonnier J, Fruchart D, Jehan M, Marty P, Miraglia S, Rivoirard S, Skryabina N (2007) Nanostructured magnesium hydride for pilot tank development. J Alloys Compd 446–447:52–57.  https://doi.org/10.1016/j.jallcom.2007.01.108CrossRefGoogle Scholar
  116. 116.
    Ma T, Isobe S, Wang Y, Hashimoto N, Ohnuki S (2013) Nb-gateway for hydrogen desorption in Nb2O5 catalyzed MgH2 nanocomposite. J Phys Chem C 117:10302–10307CrossRefGoogle Scholar
  117. 117.
    Fritzsche H, Kalisvaart WP, Zahiri B, Flacau R, Mitlin D (2012) The catalytic effect of Fe and Cr on hydrogen and deuterium absorption in Mg thin films. Int J Hydrog Energy 37:3540–3547.  https://doi.org/10.1016/j.ijhydene.2011.06.014CrossRefGoogle Scholar
  118. 118.
    Klyukin K, Shelyapina MG, Fruchart D (2011) Modelling of Mg/Ti and Mg/Nb Thin Films for Hydrogen Storage. Solid State Phenom 170:298–301.  https://doi.org/10.4028/www.scientific.net/SSP.170.298CrossRefGoogle Scholar
  119. 119.
    Junkaew A, Ham B, Zhang X, Talapatra A, Arróyave R (2013) Stabilization of bcc Mg in thin films at ambient pressure: Experimental evidence and ab initio calculations. Mater Res Lett 1:161–167.  https://doi.org/10.1080/21663831.2013.804218CrossRefGoogle Scholar
  120. 120.
    Kumar A, Beyerlein IJ, Wang J (2014) First-principles study of the structure of Mg/Nb multilayers. Appl Phys Lett 105:71602-1–71602-5.  https://doi.org/10.1063/1.4893700CrossRefGoogle Scholar
  121. 121.
    Ham B, Junkaew A, Arroyave R, Chen J, Wang H, Wang P, Majewski J, Park J, Zhou HC, Arvapally RK, Kaipa U, Omary MA, Zhang XY, Ren Y, Zhang X (2013) Hydrogen sorption in orthorhombic Mg hydride at ultra-low temperature. Int J Hydrog Energy 38:8328–8341.  https://doi.org/10.1016/j.ijhydene.2013.04.098CrossRefGoogle Scholar
  122. 122.
    Skryabina NY, Pinyugzhanin VM, Fruchart D (2013) Relationship between micro-/nano-structure and stress development in TM-doped Mg-based alloys absorbing hydrogen. Solid State Phenom 194:237–244.  https://doi.org/10.4028/www.scientific.net/SSP.194.237CrossRefGoogle Scholar
  123. 123.
    Klyukin K, Shelyapina MG, Fruchart D (2013) Hydrogen induced phase transition in magnesium: An Ab initio study. J Alloys Compd 580:S10–S12.  https://doi.org/10.1016/j.jallcom.2013.02.089CrossRefGoogle Scholar
  124. 124.
    Tao S, Notten P, van Santen R, Jansen a. (2009) Density functional theory studies of the hydrogenation properties of Mg and Ti. Phys Rev B 79:1–7.  https://doi.org/10.1103/PhysRevB.79.144121CrossRefGoogle Scholar
  125. 125.
    Uchida HT, Kirchheim R, Pundt A (2011) Influence of hydrogen loading conditions on the blocking effect of nanocrystalline Mg films. Scr Mater 64:935–937.  https://doi.org/10.1016/j.scriptamat.2011.01.036CrossRefGoogle Scholar
  126. 126.
    Tan X, Wang L, Holt CMB, Zahiri B, Eikerling MH, Mitlin D (2012) Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity. Phys Chem Chem Phys 14:10904–10909.  https://doi.org/10.1039/c2cp42136dCrossRefGoogle Scholar
  127. 127.
    Nielsen TK, Besenbacher F, Jensen TR (2011) Nanoconfined hydrides for energy storage. Nanoscale 3:2086–2098.  https://doi.org/10.1039/c0nr00725kCrossRefGoogle Scholar
  128. 128.
    Wagemans RWP, Van Lenthe JH, De Jongh PE, Van Dillen AJ, De Jong KP (2005) Hydrogen storage in magnesium clusters: Quantum chemical study. J Am Chem Soc 127:16675–16680.  https://doi.org/10.1021/ja054569hCrossRefGoogle Scholar
  129. 129.
    Koch CC (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater 9:13–22.  https://doi.org/10.1016/S0965-9773(97)00014-7CrossRefGoogle Scholar
  130. 130.
    De Jongh PE, Wagemans RWP, Eggenhuisen TM, Dauvillier BS, Radstake PB, Meeldijk JD, Geus JW, De Jong KP (2007) The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem Mater 19:6052–6057.  https://doi.org/10.1021/cm702205vCrossRefGoogle Scholar
  131. 131.
    Aguey-Zinsou KF, Ares-Fernández JR (2008) Synthesis of colloidal magnesium: A near room temperature store for hydrogen. Chem Mater 20:376–378.  https://doi.org/10.1021/cm702897fCrossRefGoogle Scholar
  132. 132.
    Zhang X, Yang R, Yang J, Zhao W, Zheng J, Tian W, Li X (2011) Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction. Int J Hydrog Energy 36:4967–4975.  https://doi.org/10.1016/j.ijhydene.2010.12.052CrossRefGoogle Scholar
  133. 133.
    Anastasopol A, Pfeiffer TV, Middelkoop J, Lafont U, Canales-Perez RJ, Schmidt-Ott A, Mulder FM, Eijt SWH (2013) Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation. J Am Chem Soc 135:7891–7900.  https://doi.org/10.1021/ja3123416CrossRefGoogle Scholar
  134. 134.
    Vajo JJ, Mertens F, Ahn CC, Bowman RC, Fultz B (2004) Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J Phys Chem B 108:13977–13983.  https://doi.org/10.1021/jp040060hCrossRefGoogle Scholar
  135. 135.
    Pinkerton FE, Meyer MS, Meisner GP, Balogh MP, Vajo JJ (2007) Phase boundaries and reversibility of LiBH4/MgH2 hydrogen storage material. J Phys Chem C Lett 111:12881–12885CrossRefGoogle Scholar
  136. 136.
    Van Mal HH, Buschow KHJ, Miedema AR (1974) Hydrogen absorption in LaNi5 and related compounds: Experimental observations and their explanation. J Less-Common Met 35:65–76.  https://doi.org/10.1016/0022-5088(74)90146-5CrossRefGoogle Scholar
  137. 137.
    Shao H, Xin G, Li X, Akiba E (2013) Thermodynamic property study of nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H systems by high pressure DSC method. J Nanomater 2013:1CrossRefGoogle Scholar
  138. 138.
    Johnson JR (1980) Reaction of hydrogen with the high temperature (C14) form of TiCr2. J Less Common Met 73:345–354.  https://doi.org/10.1016/0022-5088(80)90328-8CrossRefGoogle Scholar
  139. 139.
    Zotov TA, Sivov RB, Movlaev EA, Mitrokhin SV, Verbetsky VN (2011) IMC hydrides with high hydrogen dissociation pressure. J Alloys Compd 509:S839–S843.  https://doi.org/10.1016/J.JALLCOM.2011.01.198CrossRefGoogle Scholar
  140. 140.
    Burch R, Mason B (1979) Absorption of hydrogen by titanium–cobalt and titanium–nickel intermetallic alloys. Part 1. Experimental results. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 75:561–577Google Scholar
  141. 141.
    Mazzolai G, Coluzzi B, Biscarini A, Mazzolai FM, Tuissi A, Agresti F, Lo Russo S, Maddalena A, Palade P, Principi G (2008) Hydrogen-storage capacities and H diffusion in bcc TiVCr alloys. J Alloys Compd 466:133–139.  https://doi.org/10.1016/j.jallcom.2007.11.040CrossRefGoogle Scholar
  142. 142.
    Switendick AC (1979) Band structure calculations for metal hydrogen systems. Z Phys Chem 117:89–112.  https://doi.org/10.1524/zpch.1979.117.117.089CrossRefGoogle Scholar
  143. 143.
    Westlake DG (1983) A geometric model for the stoichiometry and interstitial site occupancy in hydrides (deuterides) of LaNi5, LaNi4Al and LaNi4Mn. J Less-Common Met 91:275–292.  https://doi.org/10.1016/0022-5088(83)90322-3CrossRefGoogle Scholar
  144. 144.
    Vajeeston P, Vidya R, Ravindran P, Fjellvåg H, Kjekshus A, Skjeltorp A (2002) Electronic structure, phase stability, and chemical bonding in Th2Al and Th2AlH4. Phys Rev B 65:75101.  https://doi.org/10.1103/PhysRevB.65.075101CrossRefGoogle Scholar
  145. 145.
    Vajeeston P, Ravindran P, Vidya R, Kjekshus A, Fjellvåg H, Yartys VA (2003) Short hydrogen-hydrogen separation in RNiInH1.333 (R = La, Ce, Nd). Phys Rev B 67:14101-1–1410111.  https://doi.org/10.1103/PhysRevB.67.014101CrossRefGoogle Scholar
  146. 146.
    Yartys VA, Denys RV, Hauback BC, Fjellvåg H, Bulyk II, Riabov AB, Kalychak YM (2002) Short hydrogen–hydrogen separations in novel intermetallic hydrides, RE3Ni3In3D4 (RE=La, Ce and Nd). J Alloys Compd 330–332:132–140CrossRefGoogle Scholar
  147. 147.
    Pöttgen R, Chevalier B (2015) Cerium intermetallics with ZrNiAl-type structure - A review. Zeitschrift fur Naturforsch – Sect B J Chem Sci 70:289–304.  https://doi.org/10.1515/znb-2015-0018CrossRefGoogle Scholar
  148. 148.
    Vajeeston P, Vidya R, Ravindran P, Fjellvåg H, Kjekshus A, Skjeltorp A (2002) Electronic structure, phase stability, and chemical bonding in Th2Al and Th2AlH4. Phys Rev B 65:75101.  https://doi.org/10.1103/PhysRevB.65.075101CrossRefGoogle Scholar
  149. 149.
    Zolliker P, Yvon K, Jorgensen JD, Rotella FJ (1986) Structural studies of the hydrogen storage material Mg2NiH4. 2. Monoclinic low-temperature structure. Inorg Chem 25:3590–3593.  https://doi.org/10.1021/ic00240a012CrossRefGoogle Scholar
  150. 150.
    García G, Abriata J, Sofo J (1999) Calculation of the electronic and structural properties of cubic Mg2NiH4. Phys Rev B 59:11746–11754.  https://doi.org/10.1103/PhysRevB.59.11746CrossRefGoogle Scholar
  151. 151.
    Takahashi Y, Yukawa H, Morinaga M (1996) Alloying effects on the electronic structure of Mg2Ni intermetallic hydride. J Alloys Compd 242:98–107.  https://doi.org/10.1016/0925-8388(96)02268-2CrossRefGoogle Scholar
  152. 152.
    Haussermann U, Blomqvist H, Noréus D (2002) Bonding and stability of the hydrogen storage material Mg2NiH4. Inorg Chem 41:3684–3692.  https://doi.org/10.1021/ic0201046CrossRefGoogle Scholar
  153. 153.
    Zolliker P, Yvon K, Fischer P, Schefer J (1985) Dimagnesium cobalt(I) pentahydride, Mg2CoH5, containing square-pyramidal (CoH54-) anions. Inorg Chem 24:4177–4180CrossRefGoogle Scholar
  154. 154.
    Shao H, Xu H, Wang Y, Li X (2004) Synthesis and hydrogen storage behavior of Mg-Co-H system at nanometer scale. J Solid State Chem 177:3626–3632.  https://doi.org/10.1016/j.jssc.2004.05.003CrossRefGoogle Scholar
  155. 155.
    Deledda S, Hauback BC (2009) The formation mechanism and structural characterization of the mixed transition-metal complex hydride Mg 2 (FeH 6)0.5 (CoH5)0.5 obtained by reactive milling. Nanotechnology 20:204010.  https://doi.org/10.1088/0957-4484/20/20/204010CrossRefGoogle Scholar
  156. 156.
    Hosni B, Khaldi C, ElKedim O, Fenineche N, Lamloumi J (2017) Electrochemical properties of Ti2Ni hydrogen storage alloy. Int J Hydrog Energy 42:1420–1428.  https://doi.org/10.1016/j.ijhydene.2016.04.032CrossRefGoogle Scholar
  157. 157.
    Balcerzak M, Jakubowicz J, Kachlicki T, Jurczyk M (2015) Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites. J Power Sources 280:435–445.  https://doi.org/10.1016/j.jpowsour.2015.01.135CrossRefGoogle Scholar
  158. 158.
    Takeshita HT, Tanaka H, Kuriyama N, Sakai T, Uehara I, Haruta M (2000) Hydrogenation characteristics of ternary alloys containing Ti4Ni2X (X=O, N, C). J Alloys Compd 311:188–193.  https://doi.org/10.1016/S0925-8388(00)01118-XCrossRefGoogle Scholar
  159. 159.
    Zavaliy I, Wojcik G, Mlynarek G, Saldan I, Yartys V, Kopczyk M (2001) Phase-structural characteristics of (Ti1-xZrx)4Ni2O0.3 alloys and their hydrogen gas and electrochemical absorption-desorption properties. J Alloys Compd 314:124–131.  https://doi.org/10.1016/S0925-8388(00)01232-9CrossRefGoogle Scholar
  160. 160.
    Reilly JJ, Wiswall RH (1974) Formation and properties of iron titanium hydride. Inorg Chem 13:218–222.  https://doi.org/10.1021/ic50131a042CrossRefGoogle Scholar
  161. 161.
    Burch R, Mason NB (1979) Absorption of hydrogen by titanium-cobalt and titanium-nickel intermetallic alloys. Part 1. Experimental results. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 75:561–577Google Scholar
  162. 162.
    Suda T, Ohkawa M, Sawada S, Watanabe S, Ohnuki S, Nagata S (2002) Effect of surface modification by ion implantation on hydrogenation property of TiFe alloy. Mater Trans 43:2703–2705.  https://doi.org/10.2320/matertrans.43.2703CrossRefGoogle Scholar
  163. 163.
    Haraki T, Oishi K, Uchida H, Miyamoto Y, Abe M, Kokaji T, Uchida S (2008) Properties of hydrogen absorption by nano-structured FeTi alloys. Int J Mater Res 99:507–512.  https://doi.org/10.3139/146.101669CrossRefGoogle Scholar
  164. 164.
    Schlapbach L (1988) Hydrogen in intermetallic compounds I. Springer, Berlin/Heidelberg/New York/London/Paris/TokyoCrossRefGoogle Scholar
  165. 165.
    Reidinger F, Lynch JF, Reilly JJ (1982) An X-ray diffraction examination of the FeTi-H2 system. J Phys F Met Phys 12:L49–L55CrossRefGoogle Scholar
  166. 166.
    Thompson P, Reilly JJ, Hastings JM (1989) The application of the Rietveld method to a highly strained material with microtwins: TiFeD1.9. J Appl Crystallogr 22:256–260CrossRefGoogle Scholar
  167. 167.
    Thompson P, Pick MA, Reidinger F, Corliss LM, Hastings JM, Reilly JJ (1978) Neutron diffraction study of β iron titanium deuteride. J Phys F Met Phys 8:L75–L80CrossRefGoogle Scholar
  168. 168.
    Endo N, Saitoh H, Machida A, Katayama Y (2013) Formation of BCC TiFe hydride under high hydrogen pressure. Int J Hydrog Energy 38:6726–6729.  https://doi.org/10.1016/j.ijhydene.2013.03.120CrossRefGoogle Scholar
  169. 169.
    Endo N, Saita I, Nakamura Y, Saitoh H, Machida A (2015) Hydrogenation of a TiFe-based alloy at high pressures and temperatures. Int J Hydrog Energy 40:3283–3287.  https://doi.org/10.1016/j.ijhydene.2015.01.015CrossRefGoogle Scholar
  170. 170.
    Stepanov IA, Flomenblit YM, Zaymovskiy VA (1983) Influence of hydrogen on the temperature of the thermoelastic martensitic transformation in titanium nickelide. Phys Met Metallogr 55:180–182Google Scholar
  171. 171.
    Wade N, Adachi Y, Hosoi Y (1990) A role of hydrogen in shape memory effect of Ti-Ni alloys. Scr Metall Mater 24:1051–1055CrossRefGoogle Scholar
  172. 172.
    Cuevas F, Latroche M, Percheron-Guégan A (2005) Relationship between polymorphism and hydrogenation properties in Ti0.64Zr0.36Ni alloy. J Alloys Compd 404–406:545–549.  https://doi.org/10.1016/j.jallcom.2005.02.072CrossRefGoogle Scholar
  173. 173.
    Young KH, Nei J (2013) The current status of hydrogen storage alloy development for electrochemical applications. Materials (Basel) 6:4574–4608.  https://doi.org/10.3390/ma6104574CrossRefGoogle Scholar
  174. 174.
    Ribeiro RM, Lemus LF, Dos Santos DS (2013) Hydrogen absorption study of ti-based alloys performed by melt-spinning. Mater Res 16:679–682.  https://doi.org/10.1590/S1516-14392013005000049CrossRefGoogle Scholar
  175. 175.
    Jacob I, Shaltiel D, Davidov D, Miloslavski I (1977) A phenomenological model for the hydrogen absorption capacity in pseudobinary laves phase compounds. Solid State Commun 23:669–672.  https://doi.org/10.1016/0038-1098(77)90546-4CrossRefGoogle Scholar
  176. 176.
    Shaltiel D, Jacob I, Davidov D (1977) Hydrogen absorption and desorption properties of AB2 Laves-phase pseudobinary compounds. J Less-Common Met 53:117–131.  https://doi.org/10.1016/0022-5088(77)90162-XCrossRefGoogle Scholar
  177. 177.
    Zhu JH, Liu CT, Pike LM, Liaw PK (2002) Enthalpies of formation of binary Laves phases. Intermetallics 10:579–595.  https://doi.org/10.1016/S0966-9795(02)00030-4CrossRefGoogle Scholar
  178. 178.
    Yadav TP, Shahi RR, Srivastava ON (2012) Synthesis, characterization and hydrogen storage behaviour of AB2 ZrFe2, Zr(Fe0.75V0.25)2, Zr(Fe0.5V0.5)2 type materials. Int J Hydrog Energy 37:3689–3696.  https://doi.org/10.1016/j.ijhydene.2011.04.210CrossRefGoogle Scholar
  179. 179.
    Ivey BDG (1986) Storing hydrogen in AB2 Laves-type compounds. Z Phys Chem 147:829–847.  https://doi.org/10.1524/zpch.1986.147.1_2.191CrossRefGoogle Scholar
  180. 180.
    Stein F, Palm M, Sauthoff G (2004) Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability. Intermetallics 12:713–720.  https://doi.org/10.1016/j.intermet.2004.02.010CrossRefGoogle Scholar
  181. 181.
    Thoma DJ, Perepezko JH (1995) A geometric analysis of solubility ranges in Laves phases. J Alloys Compd 224:330–341.  https://doi.org/10.1016/0925-8388(95)01557-4CrossRefGoogle Scholar
  182. 182.
    van Vucht JHN, Kuijpers FA, Bruning HCAM (1970) Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res Rep 25:133–140Google Scholar
  183. 183.
    Boser O (1976) Hydrogen sorption in LaNi5. J Less-Common Met 46:91–99.  https://doi.org/10.1016/0022-5088(76)90182-XCrossRefGoogle Scholar
  184. 184.
    Nahm K, Kim W, Hong S, Lee W (1992) The reaction kinetics of hydrogen storage in LaNi5. Int J Hydrog Energy 17:333–338.  https://doi.org/10.1016/0360-3199(92)90169-WCrossRefGoogle Scholar
  185. 185.
    Sakai T, Matsuoka M, Iwakura C (1995) Rare earth intermetallics for metal-hydrogen batteries. In: Handbook on the Physics and Chemistry of Rare Earth, vol 21. Elsevier, Amsterdam, pp 133–178Google Scholar
  186. 186.
    Thompson P, Reilly JJ, Corliss LM, Hastings JM, Hempelmann R (1986) The crystal structure of LaNi5D7. J Phys F Met Phys 16:675–685.  https://doi.org/10.1088/0305-4608/16/6/004CrossRefGoogle Scholar
  187. 187.
    Lartigue C, Le Bail A, Percheron-Guegan A (1987) A new study of the structure of LaNi5D6.7 using a modified Rietveld method for the refinement of neutron powder diffraction data. J Less Common Met 129:65–76.  https://doi.org/10.1016/0022-5088(87)90034-8CrossRefGoogle Scholar
  188. 188.
    Adzic GD, Johnson JR, Reilly JJ, McBreen J, Mukerjee S, Sridhar Kumar MP, Zhang W, Srinivasan S (1995) Cerium Content and Cycle Life of Multicomponent AB5 Hydride Electrodes. J Electrochem Soc 142:3429–3433.  https://doi.org/10.1149/1.2049999CrossRefGoogle Scholar
  189. 189.
    Černý R, Joubert JM, Latroche M, Percheron-Guégan A, Yvon K (2000) Anisotropic diffraction peak broadening and dislocation substructure in hydrogen-cycled LaNi5 and substitutional derivatives. J Appl Crystallogr 33:997–1005.  https://doi.org/10.1107/S0021889800004556CrossRefGoogle Scholar
  190. 190.
    Joubert JM, Latroche M, Percheron-Guégan A, Yvon K (2002) Hydrogen cycling induced degradation in LaNi5-type materials. J Alloys Compd 330–332:208–214.  https://doi.org/10.1016/S0925-8388(01)01640-1CrossRefGoogle Scholar
  191. 191.
    Kumar MPS, Zhang W, Petrov K, Rostami AA, Srinivasan S, Adzic GD, Johnson JR, Reilly JJ, Lim HS (1995) Effect of Ce, Co, and Sn substitution on gas phase and electrochemical hydriding/dehydriding properties of LaNi5. J Electrochem Soc 142:3424–3428CrossRefGoogle Scholar
  192. 192.
    Liang G, Huot J, Schulz R (2001) Hydrogen storage properties of the mechanically alloyed LaNi5-based materials. J Alloys Compd 320:133–139.  https://doi.org/10.1016/S0925-8388(01)00929-XCrossRefGoogle Scholar
  193. 193.
    Kadir K, Sakai T, Uehara I (1997) Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. J Alloys Compd 257:115–121.  https://doi.org/10.1016/S0925-8388(96)03132-5CrossRefGoogle Scholar
  194. 194.
    Kadir K, Kuriyama N, Sakai T, Uehara I, Eriksson L (1999) Structural investigation and hydrogen capacity of CaMg2Ni9: a new phase in the AB2C9 system isostructural with LaMg2Ni9. J Alloys Compd 284:145–154.  https://doi.org/10.1016/S0925-8388(98)00965-7CrossRefGoogle Scholar
  195. 195.
    Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M (2000) Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. J Alloys Compd 311:5–7.  https://doi.org/10.1016/S0925-8388(00)01119-1CrossRefGoogle Scholar
  196. 196.
    Orimo S, Fujii H (2001) Materials science of Mg-Ni-based new hydrides. Appl Phys A Mater Sci Process 72:167–186.  https://doi.org/10.1007/s003390100771CrossRefGoogle Scholar
  197. 197.
    Akiba E, Hayakawa H, Kohno T (2006) Crystal structures of novel La-Mg-Ni hydrogen absorbing alloys. J Alloys Compd 408–412:280–283.  https://doi.org/10.1016/j.jallcom.2005.04.180CrossRefGoogle Scholar
  198. 198.
    Ozaki T, Kanemoto M, Kakeya T, Kitano Y, Kuzuhara M, Watada M, Tanase S, Sakai T (2007) Stacking structures and electrode performances of rare earth-Mg-Ni-based alloys for advanced nickel-metal hydride battery. J Alloys Compd 446–447:620–624.  https://doi.org/10.1016/j.jallcom.2007.03.059CrossRefGoogle Scholar
  199. 199.
    Rodewald UC, Chevalier B, Pöttgen R (2007) Rare earth-transition metal-magnesium compounds-An overview. J Solid State Chem 180:1720–1736.  https://doi.org/10.1016/j.jssc.2007.03.007CrossRefGoogle Scholar
  200. 200.
    Denys RV, Yartys VA (2011) Effect of magnesium on the crystal structure and thermodynamics of the La3-xMgxNi9 hydrides. J Alloys Compd 509:540–548.  https://doi.org/10.1016/j.jallcom.2010.11.205CrossRefGoogle Scholar
  201. 201.
    Liu W, Webb CJ, Gray EMA (2016) Review of hydrogen storage in AB3 alloys targeting stationary fuel cell applications. Int J Hydrog Energy 41:3485–3507.  https://doi.org/10.1016/j.ijhydene.2015.12.054CrossRefGoogle Scholar
  202. 202.
    Liao B, Lei YQ, Chen LX, GL L, Pan HG, Wang QD (2005) The effect of Al substitution for Ni on the structure and electrochemical properties of AB3-type La2Mg(Ni1−xAlx)9 () alloys. J Alloys Compd 404–406:665–668.  https://doi.org/10.1016/j.jallcom.2004.10.088CrossRefGoogle Scholar
  203. 203.
    Dong Z, Wu Y, Ma L, Shen X, Wang L (2010) Influences of low-Ti substitution for la and Mg on the electrochemical and kinetic characteristics of AB3-type hydrogen storage alloy electrodes. Sci China Technol Sci 53:242–247.  https://doi.org/10.1007/s11431-009-0282-2CrossRefGoogle Scholar
  204. 204.
    Dong Z, Ma L, Shen X, Wang L, Wu Y, Wang L (2011) Cooperative effect of Co and Al on the microstructure and electrochemical properties of AB3-type hydrogen storage electrode alloys for advanced MH/Ni secondary battery. Int J Hydrog Energy 36:893–900.  https://doi.org/10.1016/j.ijhydene.2010.08.056CrossRefGoogle Scholar
  205. 205.
    Liu Y, Cao Y, Huang L, Gao M, Pan H (2011) Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries. J Alloys Compd 509:675–686.  https://doi.org/10.1016/j.jallcom.2010.08.157CrossRefGoogle Scholar
  206. 206.
    Tsunokake S, Fuura T, Sakaguchi Y, Takahashi K (2012) Development of hybrid hydrogen storage tank for fuel cell vehicle. In: Kojima Y, Kuriyama N (eds) International Symposium on Metal – Hydrogen Systems. Fundamentals and Applications. Kyoto, p 451Google Scholar
  207. 207.
    Nakamura J, Fuura T, Tsunokake S (2014) Price reduction of V-based BCC-type alloy for hybrid tank system, loaded in FCV. In: Ota K, Umeda M, Yoshitake M, Ishida M (eds) State-of-the-art Fuel Cells and Hydrogen Technology in Japan. Fuel Cell Development Information Center, TokyoGoogle Scholar
  208. 208.
    Iba H, Akiba E (1995) The relation between microstructure and hydrogen absorbing property in Laves phase-solid solution multiphase alloys. J Alloys Compd 231:508–512.  https://doi.org/10.1016/0925-8388(95)01863-8CrossRefGoogle Scholar
  209. 209.
    Huot J, Akiba E, Iba H (1995) Crystal structure and phase composition of alloys Zr1−xTix(Mn1−yVy)2. J Alloys Compd 228:181–187.  https://doi.org/10.1016/0925-8388(95)01884-0CrossRefGoogle Scholar
  210. 210.
    Iba H, Akiba E (1997) Hydrogen absorption and modulated structure in Ti–V–Mn alloys. J Alloys Compd 253–254:21–24.  https://doi.org/10.1016/S0925-8388(96)03072-1CrossRefGoogle Scholar
  211. 211.
    Maeland AJ, Libowitz GG, Lynch JP (1984) Hydride formation rates of titanium-based B.C.C. solid solution alloys. J Less-Common Met 104:361–364.  https://doi.org/10.1016/0022-5088(84)90420-XCrossRefGoogle Scholar
  212. 212.
    Libowitz GG, Maeland AJ (1988) Hydride formation by B.C.C. solid solution alloys. Mater Sci Forum 31:177–196.  https://doi.org/10.4028/www.scientific.net/MSF.31.177CrossRefGoogle Scholar
  213. 213.
    Akiba E, Iba H (1998) Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 6:461–470.  https://doi.org/10.1016/S0966-9795(97)00088-5CrossRefGoogle Scholar
  214. 214.
    Pei P, Song XP, Liu J, Chen GL, Qin XB, Wang BY (2009) The effect of rapid solidification on the microstructure and hydrogen storage properties of V35Ti25Cr40 hydrogen storage alloy. Int J Hydrog Energy 34:8094–8100.  https://doi.org/10.1016/j.ijhydene.2009.08.023CrossRefGoogle Scholar
  215. 215.
    Tousignant M, Huot J (2011) Replacement of vanadium by ferrovanadium in Ti-based BCC slloys for hydrogen storage. Solid State Phenom 170:144–149.  https://doi.org/10.4028/www.scientific.net/SSP.170.144CrossRefGoogle Scholar
  216. 216.
    Bibienne T, Tousignant M, Bobet JL, Huot J (2015) Synthesis and hydrogen sorption properties of TiV(2-x)Mnx BCC alloys. J Alloys Compd 624:247–250.  https://doi.org/10.1016/j.jallcom.2014.11.060CrossRefGoogle Scholar
  217. 217.
    Bavrina OO, Shelyapina MG (2017) Hydrogen solubility energy in fcc hydrides of disordered Ti-V-Cr alloys: a DFT study. Phys Solid State 59:1895–1899.  https://doi.org/10.1134/S1063783417100043CrossRefGoogle Scholar
  218. 218.
    Nachev S, De Rango P, Skryabina N, Skachkov A, Aptukov V, Fruchart D, Marty P (2015) Mechanical behavior of highly reactive nanostructured MgH2. Int J Hydrog Energy 40:17065–17074.  https://doi.org/10.1016/j.ijhydene.2015.05.022CrossRefGoogle Scholar
  219. 219.
    Klyukin K, Shelyapina MG, Fruchart D (2015) DFT calculations of hydrogen diffusion and phase transformations in magnesium. J Alloys Compd 644:371–377.  https://doi.org/10.1016/j.jallcom.2015.05.039CrossRefGoogle Scholar
  220. 220.
    Vyvodtceva AV, Shelyapina MG, Privalov AF, Chernyshev YS, Fruchart D (2014) 1H NMR study of hydrogen self-diffusion in ternary Ti-V-Cr alloys. J Alloys Compd 614:364–367.  https://doi.org/10.1016/j.jallcom.2014.06.023CrossRefGoogle Scholar
  221. 221.
    Miraglia S, De Rango P, Rivoirard S, Fruchart D, Charbonnier J, Skryabina N (2012) Hydrogen sorption properties of compounds based on BCC Ti1-xV1-yCr1+x+y alloys. J Alloys Compd 536:1–6.  https://doi.org/10.1016/j.jallcom.2012.05.008CrossRefGoogle Scholar
  222. 222.
    Iba H, Akiba E (2000) Hydrogen-absorbing alloy and process for preparing the same. U.S. Patent 6,153,032. https://www.google.com/patents/US6153032
  223. 223.
    Lynch JF, Johnson JR, Reilly JJ (1979) The dilute solution of hydrogen and deuterium in (C-15) TiCr1.8. Zeitschrift Phys Chem Neue Folge, Bd 117:229–243.  https://doi.org/10.1524/zpch.1979.117.117.229CrossRefGoogle Scholar
  224. 224.
    Miraglia S, Fruchart D, Skryabina N, Shelyapina M, Ouladiaf B, Hlil EK, de Rango P, Charbonnier J (2007) Hydrogen-induced structural transformation in TiV0.8Cr1.2 studied by in situ neutron diffraction. J Alloys Compd 442:49–54.  https://doi.org/10.1016/j.jallcom.2006.10.168CrossRefGoogle Scholar
  225. 225.
    Shelyapina MG, Kasperovich VS, Skryabina NE, Fruchart D (2007) Ab initio calculations of the stability of disordered Ti-V-Cr solid solutions and their hydrides. Phys Solid State 49:399–402.  https://doi.org/10.1134/S1063783407030018CrossRefGoogle Scholar
  226. 226.
    Taizhong H, Zhu W, Baojia X, Tiesheng H (2005) Influence of V content on structure and hydrogen desorption performance of TiCrV-based hydrogen storage alloys. Mater Chem Phys 93:544–547.  https://doi.org/10.1016/j.matchemphys.2005.04.004CrossRefGoogle Scholar
  227. 227.
    Planté D, Andrieux J, Laversenne L, Miraglia S (2015) In situ X-Ray diffraction study of hydrogen sorption in V-rich Ti-V-Cr bcc solid solutions. J Alloys Compd 648:79–85.  https://doi.org/10.1016/j.jallcom.2015.05.254CrossRefGoogle Scholar
  228. 228.
    Okada M, Kuriiwa T, Tamura T, Takamura H, Kamegawa A (2002) Ti-V-Cr B.C.C. alloys with high protium content. J Alloys Compd 330–332:511–516.  https://doi.org/10.1016/S0925-8388(01)01647-4CrossRefGoogle Scholar
  229. 229.
    Planté D, Raufast C, Miraglia S, De Rango P, Fruchart D (2013) Improvement of hydrogen sorption properties of compounds based on Vanadium “BCC” alloys by mean of intergranular phase development. J Alloys Compd 580:192–196.  https://doi.org/10.1016/j.jallcom.2013.03.080CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Nuclear Physics Research MethodsSaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations