Photocatalytic H2 Production and Carbon Dioxide Capture Using Metallurgical Slag and Slag-Derived Materials

  • C. V. Montoya-Bautista
  • B. C. Alcántar-Vázquez
  • M. Solís-López
  • C. G. Tabla-Vázquez
  • A. A. Morales-Pérez
  • R. Schouwenaars
  • R. M. Ramírez-ZamoraEmail author
Reference work entry


Consumption of fossil fuels increases year by year with negative impacts on the environment, particularly due to the emission of carbon dioxide (CO2), a major anthropogenic greenhouse gas. Consequently, important scientific challenges for the upcoming years are the development of cleaner energy sources to satisfy the increasing energy demand, the reduction of the consumption of fossil fuels, and mitigation of the CO2 emissions. Therefore, the production of renewable fuels with high energy content is researched, while efficient CO2 capture is developed to reduce emissions from less-clean energy resources. For the former challenge, the production of hydrogen by heterogeneous photocatalysis is a potential solution. For the second problem, the use of solid sorbents for CO2 capture as CaO and alkaline ceramics are promising proposals.

The development of catalysts and materials for CO2 capture with high efficiency and stability as well as reasonable production costs is a great challenge. In the search for new efficient and inexpensive materials, metallurgical slags are quite attractive due to their physicochemical characteristics, abundance, and low cost. The high iron oxide content (>50% w/w) and the presence of crystalline phases such as fayalite (Fe2SiO4) and magnetite (Fe3O4) in the metallurgical copper slag indicate it may be active photocatalyst. On the other hand, the composition of the iron and steel slags makes these materials an excellent feedstock for the synthesis of CaO-based materials and other derived materials for CO2 capture technologies.


  1. 1.
    Davenport W, King M, Schlesinger M, Biswas AK (2002) Overview. In: Davenport W, King M, Schlesinger M, Biswas AK (eds) Extractive metallurgy of copper, 4th edn. Pergamon Press, Oxford, UK, pp 1–16Google Scholar
  2. 2.
    U.S. Department of the Interior, U.S. Geological Survey (2016) In: Miner-al commodity summaries 2016. Available via DIALOG. Accessed 12 Jun 2017
  3. 3.
    The University of Arizona (2017) Copper mining and processing: processing of copper ores. Accessed 10 Jun 2017Google Scholar
  4. 4.
    Burroughs C, Lorig C, Shewmon PG, Charles JA (2017) Extractive metallurgy. In: Metallurgy. Encyclopædia Britannica, Inc. Available via DIALOG. Accessed 15 Jun 2017
  5. 5.
    Berdowski J, van der Most P, Slager JM, Mulder W, Hlawiczka S, Fudala J, Bloos JP, Verhoeve P, Quass U, Pierce M, Pulles T, Appelman W, Rentz O, Karl U, Woodfield M (2016) Metal production. In: EMEP/EEA air pollutant emission inventory guidebook 2016. EEA European Environment Agency, Copenhagen, pp 8–18Google Scholar
  6. 6.
    Secretaria de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-157-SEMARNAT-2009 (2011) Available via DIALOG. Accessed 9 Jun 2017
  7. 7.
    National Slag Association (2013) Common uses from slags. Accessed 12 Jun 2017
  8. 8.
    Nippon Slag Association (2003) Types of iron and steel slags. Accessed 12 Jun 2017
  9. 9.
    Euroslag (2010) Statistics 2010. In: Statistical data. The European Slag Association – Euroslag. Available via DIALOG. Accessed 15 Jun 2017
  10. 10.
    Environmental Protection Agency (2016) TENORM: Copper Mining and Production Wastes. In: Radiation protection. Available via DIALOG. Accessed 1st Jun 2017
  11. 11.
    European Commission (2017) Extractive waste. In: Environment. European Commission. Available via DIALOG. Accessed 15 Jun 2017
  12. 12.
    Commission Decision (EU) No 2014/955/EU of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council Text with EEA relevance (OJ L 370, 30.12.2014, p. 44–86). Available via DIALOG. Accessed 16 Jun 2017
  13. 13.
    Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance). Special edition in Croatian: Chapter 15 Volume 034 P. 99–126. Available via DIALOG. Accessed 16 Jun 2017
  14. 14.
    Commission Implementing Decision (EU) 2016/1032 of 13 June 2016 establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the non-ferrous metals industries (notified under document C (2016) 3563) (Text with EEA relevance) Available via DIALOG. Accessed 16 Jun 2017
  15. 15.
    Mercado-Borrayo BM, Schouwenaars R, González-Chávez JL, Ramírez-Zamora RM (2013) Multianalytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water. J Environ Sci Heal A 48:887–895CrossRefGoogle Scholar
  16. 16.
    Jarošíková A, Ettler V, Mihaljevič M, Kříbek B, Mapani B (2017) The pH-dependent leaching behavior of slags from various stages of a copper smelting process: environmental implications. J Environ Manag 187:178–186CrossRefGoogle Scholar
  17. 17.
    Piatak NM, Parsons MB, Seal RRII (2015) Characteristics and environmental aspects of slag: a review. Appl Geochem 57:236–266CrossRefGoogle Scholar
  18. 18.
    Huang Y, Guoping X, Huigao C, Junshi W, Yinfeng W, Hui C (2012) An overview of utilization of steel slag. Procedia Environ Sci 16:791–801CrossRefGoogle Scholar
  19. 19.
    Huaiwei Z, Xin Z (2011) An overview for the utilization of wastes from stainless steel industries. Resour Conserv Recycl 55:745–754CrossRefGoogle Scholar
  20. 20.
    Kim HS, Kim KS, Jung SS, Hwang JI, Choi JS, Sohn I (2015) Valorization of electric arc furnace primary steelmaking slags for cement applications. Waste Manag 41:85–93CrossRefGoogle Scholar
  21. 21.
    Gorai B, Jana RK, Premchand (2003) Characteristics and utilisation of copper slag-a review. Resour Conserv Recycl 39:299–313CrossRefGoogle Scholar
  22. 22.
    IUPAC (2017) International union of pure and applied chemistry. Photocatalysis. Available via DIALOG Accessed 7 May 2017
  23. 23.
    Yang J, Wanget S, Lu Z, Yang J, Lou S (2009) Converter slag–coal cinder columns for the removal of phosphorous and other pollutants. J Hazard Mater 168:331–337CrossRefGoogle Scholar
  24. 24.
    Haibo L, Yinghua L, Zongqiang G, Xiaodong L (2013) Performance study of vertical flow constructed wetlands for phosphorus removal with water quenched slag as a substrate. Ecol Eng 53:39–45CrossRefGoogle Scholar
  25. 25.
    Zukhra C, Mirabbos H, Longli B, Okada K (2015) Simultaneous removal of NH4 +, H2PO4 − and Ni2+ from aqueous solution by thermally activated combinations of steel converter slag and spent alumina catalyst. J Water Process Eng 8:151–159CrossRefGoogle Scholar
  26. 26.
    Jiayuan S, Yasutaka K, Taicheng A, Yamashita H (2017) The fabrication of TiO2 supported on slag-made calcium silicate as low-cost photocatalyst with high adsorption ability for the degradation of dye pollutants in water. Catal Today 281:21–28CrossRefGoogle Scholar
  27. 27.
    Kang L, Zhang Y, Zhang L, Zhang K (2017) Preparation, characterization and photocatalytic activity of novel CeO2 loaded porous alkali-activated steel slag-based binding material. Int J Hydrog Energy 42:17341–17349CrossRefGoogle Scholar
  28. 28.
    Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Liu Y, Wan J, Gong X, Zhu Y (2016) Degradation of atrazine by a novel Fenton-like process and assessment the influence on the treated soil. J Hazard Mater 312:184–191CrossRefGoogle Scholar
  29. 29.
    Tsai T, Kao C, Wang J (2011) Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation. Chemosphere 83:687–692CrossRefGoogle Scholar
  30. 30.
    Zheng J, Gao Z, He H, Yang S, Sun C (2016) Efficient degradation of acid orange 7 in aqueous solution by iron ore tailing Fenton-like process. Chemosphere 150:40–48CrossRefGoogle Scholar
  31. 31.
    Mihailova I, Ivanov G, Mehandjiev D (2011) Catalytic activity in oxidation reactions of copper furnace slag and converter slag. J Univ Chem Technol Metallurgy 46(2):143–150Google Scholar
  32. 32.
    Name T, Sheridan C (2014) Remediation of acid mine drainage using metallurgical slags. Miner Eng 64:15–22CrossRefGoogle Scholar
  33. 33.
    Ziemkiewicz P (1998) Steel slag: applications for AMD control. In: Proceedings of the 1998, conference on Hazardous Waste Research. Snowbird, UtahGoogle Scholar
  34. 34.
    Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C: Photochem Rev 11:179–209CrossRefGoogle Scholar
  35. 35.
    Patsoura A, Kondarides D, Verykios XE (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124:94–102CrossRefGoogle Scholar
  36. 36.
    Colón G (2016) Towards the hydrogen production by photocatalysis. Appl Catal A 518:48–59CrossRefGoogle Scholar
  37. 37.
    Im Y, Kang S, Kim KM, Ju T, Han GB, Park N-K, Lee TJ, Kang M (2013) Dynamic hydrogen production from methanol/water photo-splitting using Core@Shell-structured CuS@TiO2Catalyst wrapped by high concentrated TiO2 particles. Int J Photogr 2013:10. Scholar
  38. 38.
    Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 101(11):6503–6570CrossRefGoogle Scholar
  39. 39.
    Kaneco M, Okura I (2002) Photocatalysis: science and technology. Springer, TokyoGoogle Scholar
  40. 40.
    García Pérez R (2015) Valorización de escoria metalúrgica de la industria del cobre como fotocatalizador para el tratamiento de aguas contaminadas con ácido acético con una producción simultánea de hidrógeno. Dissertation, Universidad Nacional Autónoma de México. Available via DIALOG Accessed 6 Jun 2017
  41. 41.
    Hernández Mazatan MA (2014) Producción de hidrógeno por degradación de compuestos orgánicos en agua mediante el proceso de fotocatálisis heterogénea. Dissertation, Universidad Nacional Autónoma de México. Available via DIALOG Accessed 6 Jun 2017
  42. 42.
    Lü H, Li N, Wu X, Li L, Gao Z (2013) A novel conversion of Ti-bearing blast-furnace slag into water splitting photocatalyst with visible-light-response. Metall Mater Trans B 44B:1317–1320CrossRefGoogle Scholar
  43. 43.
    Zhang YJ, Kang L, Si HX, Zhang JF (2014) A novel alkali-activated magnesium slag-based nanocomposite for photocatalytic production of hydrogen. Integr Ferroelectr 154:120–127CrossRefGoogle Scholar
  44. 44.
    Amorim SM, Domenico MD, Dantas TLP, José HJ, Moreira RFPM (2016) Lithium orthosilicate for CO2 capture with high regeneration capacity: kinetic study and modeling of carbonation and decarbonation reactions. Chem Eng J 283:388–396CrossRefGoogle Scholar
  45. 45.
    Erans M, Manovic V, Anthony EJ (2016) Calcium looping sorbents for CO2 capture. Appl Energy 180:722–742CrossRefGoogle Scholar
  46. 46.
    Pfeiffer H (2010) Advances on alkaline ceramics as possible CO2 captors. Advances in CO2 conversion and utilization. ACS Symp Ser 1056:233–253CrossRefGoogle Scholar
  47. 47.
    Abanades JC (2015) Emerging CO2 capture systems. Int J Greenhouse Gas Control 40:126–166CrossRefGoogle Scholar
  48. 48.
    He S (2017) Investigation of CaO-based sorbents derived from eggshells and red mud for CO2 capture. J Alloys Compd 701:828–833CrossRefGoogle Scholar
  49. 49.
    Luo C, Zheng Y, Xu Y, Ding N, Shen Q, Zheng C (2015) Wet mixing combustion synthesis of CaO-based sorbents for high temperature cyclic CO2 capture. Chem Eng J 267:111–116CrossRefGoogle Scholar
  50. 50.
    Chowdhury MBI, Quddus MR, deLasa HI (2013) CO2 capture with a novel solid fluidizable sorbent: thermodynamics and temperature programmed carbonation–Decarbonation. Chem Eng J 232:139–148CrossRefGoogle Scholar
  51. 51.
    Li Y, Zhao C, Chen H, Liang C, Duan L, Zhou W (2009) Modified CaO-based sorbent looping cycle for CO2 mitigation. Fuel 88:697–704CrossRefGoogle Scholar
  52. 52.
    Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39:9676–9682CrossRefGoogle Scholar
  53. 53.
    Bonenfant D (2009) Molecular analysis of carbon dioxide adsorption processes on steel slag oxides. Int J Greenhouse Gas Control 3:20–28CrossRefGoogle Scholar
  54. 54.
    Yu J, Wang K (2011) Study on characteristics of steel slag for CO2 capture. Energy Fuel 25:5483–5492CrossRefGoogle Scholar
  55. 55.
    Tian S, Jiang J, Chen X, Yan F, Li K (2013) Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO2 in steel-making plants. ChemSusChem 6:2348–2355CrossRefGoogle Scholar
  56. 56.
    Bonenfant D, Kharoune L, Hausler R, Niquette P (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47:7610–7616CrossRefGoogle Scholar
  57. 57.
    Doucet FJ (2010) Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation. Miner Eng 23:262–269CrossRefGoogle Scholar
  58. 58.
    Tian S, Jiang J, Li K, Yan F, Chen X (2014) Performance of steel slag in carbonation–calcination looping for CO2 capture from industrial flue gas. RSC Adv 4: 6858–6862CrossRefGoogle Scholar
  59. 59.
    Ortiz C, Valverde JM, Chacartegui R (2016) Energy consumption for CO2 capture by means of the calcium looping process: a comparative analysis using limestone, dolomite, and steel slag. Energ Technol 4:1317–1327CrossRefGoogle Scholar
  60. 60.
    Tian S, Jiang J, Yan F, Li K, Chen X (2015) Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag. Environ Sci Technol 49: 7464–7472CrossRefGoogle Scholar
  61. 61.
    Miranda-Pizarro J, Perejón A, Valverde JM, Sánchez-Jiménez PE, Pérez-Maqueda LA (2016) Use of steel slag for CO2 capture under realistic calcium-looping conditions. RSC Adv 6: 37656–37663CrossRefGoogle Scholar
  62. 62.
    Alcántar-Vázquez B, Schouwenaars R, Ramirez-Zamora RM (2017) CO2 capture at high temperature using slag – derived lithium silicates. In: Proceedings 5th international slag valorisation symposium, Leuven. Avalilable via DIALOG Accessed 15 Nov 2017
  63. 63.
    IPCC (2014) Climate change 2014: mitigation of climate change. Available via DIALOG. Accessed 16 Nov 2017
  64. 64.
    Romeo LM, Lara Y, Lisbona P, Martinez A (2009) Economical assessment of competitive enhanced limestones for CO2 capture cycles in power plants. Fuel Process Technol 90:803−811CrossRefGoogle Scholar
  65. 65.
    Anthony EJ (2011) Ca looping technology: current status, developments, and future directions. Greenhouse Gas Sci Technol 1:36–47CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • C. V. Montoya-Bautista
    • 1
  • B. C. Alcántar-Vázquez
    • 1
  • M. Solís-López
    • 2
    • 4
  • C. G. Tabla-Vázquez
    • 1
  • A. A. Morales-Pérez
    • 3
  • R. Schouwenaars
    • 2
  • R. M. Ramírez-Zamora
    • 1
    Email author
  1. 1.Instituto de Ingeniería, Coordinación de Ingeniería AmbientalUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  2. 2.Facultad de Ingeniería, Departamento de Materiales y Manufactura, DIMEIUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  3. 3.Área de Ingeniería Química, Departamento de IPH, CBIUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMéxico
  4. 4.Programa de Nanociencias y NanotecnologíaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Ciudad de MéxicoMéxico

Personalised recommendations