Advertisement

Antimicrobial Activity of the Engineered Nanoparticles Used as Coating Agents

  • Meenakshisundaram SwaminathanEmail author
  • Naresh Kumar Sharma
Reference work entry

Abstract

Engineered nanoparticles (ENPs) have been intensively studied within the past decade for use in environmental purifications, energy storage/ conversion, antimicrobial coating agents and so on. Several mono metallic and doped nanomaterials such as (TiO2, ZnO, Ag TiO2, Ag ZnO, etc.,) have been prepared and tested for photocatalysis and antimicrobial toxicity. Nanoparticles are of interest as antibacterial agents and subsequently as anti-coating materials because of their large surface area to volume ratio and the generation of highly Reactive Oxygen Species (ROS) such as O2-, H2O2 and HO. which are the known principal agents in damaging the cell wall of many microbes.

Many studies have investigated the antibacterial effect of monometallic and doped nanomaterial, however our investigation focused upon the use of bi, tri metallic and semiconductor coupled oxides in inhibiting the bacterial growth and for photocatalysis. Bacillus subtillis (gram positive) and Escherichia coli (gram negative) were taken as model microbes for the antibacterial tests using different ENPs. Correlations have been formed between the antibacterial effects and morphology of the ENPs. Nano coatings are therefore a prospective way to not only control the growth of microbes but also to oxidize certain common indoor air pollutants such as VOCs and NOx.

References

  1. 1.
    Abid JP, Wark AW, Brevet PF, Girault HH (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun (7):792–793Google Scholar
  2. 2.
    Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR (2011) Biosynthesis of silver nanoparticles from Desmodium triflorum a novel approach towards weed utilization. Biotechnol Res Int 45:1–8CrossRefGoogle Scholar
  3. 3.
    Ahmed NA, Mohammed FA, Zahraa AK (2016) Antibacterial activity of Cadmium Oxide nanoparticles synthesized by chemical method. J Multidiscip Eng Sci Technol 3: 5007–5011Google Scholar
  4. 4.
    Aymonier C, U Schlotterbeck, L Antonietti, P Zacharias, R Thomann, J C Tiller, S Mecking (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun 24: 3018–19Google Scholar
  5. 5.
    Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249CrossRefGoogle Scholar
  6. 6.
    Bera RK, Mandal SM, Retna RC (2014) Antimicrobial activity of fluorescent ag nanoparticles. Lett Appl Microbiol 58:520–526CrossRefGoogle Scholar
  7. 7.
    Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23:887–892CrossRefGoogle Scholar
  8. 8.
    Brayner R, Ferrari Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870CrossRefGoogle Scholar
  9. 9.
    Das SK (2009) Gold nanoparticles microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199CrossRefGoogle Scholar
  10. 10.
    Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670CrossRefGoogle Scholar
  11. 11.
    Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces 1(7):1553–1560CrossRefGoogle Scholar
  12. 12.
    Feynman R (1991) There’s plenty of room at the bottom. Science 254:1300–1301CrossRefGoogle Scholar
  13. 13.
    Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3(9):1261–1263CrossRefGoogle Scholar
  14. 14.
    Gutierrez FM, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Gay YA (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 6:681–688CrossRefGoogle Scholar
  15. 15.
    Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 8:37–45CrossRefGoogle Scholar
  16. 16.
    Herrera M, Carrion P, Baca P, Liebana J, Castillo A (2001) In vitro antibacterial activity of glass-ionomer cements. Microbios 104:141–148Google Scholar
  17. 17.
    Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789CrossRefGoogle Scholar
  18. 18.
    Hosseinpour Mashkani SM, Ramezani M (2014) Silver and silver oxide nanoparticles synthesis and characterization by thermal decomposition. Mater Lett 130:259–262CrossRefGoogle Scholar
  19. 19.
    Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110(9):4066–4072CrossRefGoogle Scholar
  20. 20.
    Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van DRP (1999) Nanosphere lithography size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103:3854–3863CrossRefGoogle Scholar
  21. 21.
    Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles chemical, physical and biological methods. Res Pharm Sci 9(6):385–406Google Scholar
  22. 22.
    Kim JS et al (2007a) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101CrossRefGoogle Scholar
  23. 23.
    Konishi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653CrossRefGoogle Scholar
  24. 24.
    Kotloff K, Winickoff J, Ivanoff B, Clemens JD, Swerdlow D, Sansonetti P, Adak G, Levine M (1999) Global burden of Shigella infections implications for vaccine development and implementation of control strategies. Bull World Health Organ 77(8):651–666Google Scholar
  25. 25.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60 Buckminsterfullerene. Nature 318:162CrossRefGoogle Scholar
  26. 26.
    Kruis F, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 69:329–334CrossRefGoogle Scholar
  27. 27.
    Loomba L, Scarabelli T (2013) Metallic nanoparticles and their medicinal potential. Part I: Gold and silver colloids. Ther Deliv 4(7):859–873CrossRefGoogle Scholar
  28. 28.
    Martínez Flores E, Negrete J, Torres Villaseñor G (2003) Structure and properties of Zn-Al-Cu alloy reinforced with alumina particles. Mater Des 24:281–286CrossRefGoogle Scholar
  29. 29.
    Merga G, Wilson R, Lynn G, Milosavljevic B, Meisel D (2007) Redox catalysis on “naked” silver nanoparticles. J Phys Chem C 111:12220–12206CrossRefGoogle Scholar
  30. 30.
    Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720CrossRefGoogle Scholar
  31. 31.
    Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams CS, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:15–27CrossRefGoogle Scholar
  32. 32.
    Pavasupree S, Jitputti J, Ngamsinlapasathian S, Yoshikawa S (2008) Hydrothermal synthesis, characterization, photocatalytic activity and dye sensitized solar cell performance of mesoporous anatase TiO2 nanopowders. Mater Res Bull 43:149–157CrossRefGoogle Scholar
  33. 33.
    Perni S (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93CrossRefGoogle Scholar
  34. 34.
    Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2009) Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 28:207–213CrossRefGoogle Scholar
  35. 35.
    Predoi D, Valsangiacom CM (2007) Thermal studies of magnetic spinal iron oxide in solution. J Optoelectron Adv Mater 9:1797–1799Google Scholar
  36. 36.
    Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control potential applications and implications. Water Res 42:4591–4602CrossRefGoogle Scholar
  37. 37.
    Raghupati RK, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028CrossRefGoogle Scholar
  38. 38.
    Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789–6798CrossRefGoogle Scholar
  39. 39.
    Rasmussen J, Martinez W, Louka E, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7(9):1063–1077CrossRefGoogle Scholar
  40. 40.
    Singh R, Nalwa HS (2011) Medical applications of nanoparticles in biological imaging, cell labeling, AntimicrobialAgents, and anticancer nanodrugs. J Biomed Nanotechnol 7:489–503CrossRefGoogle Scholar
  41. 41.
    Ravishankar RV, Jamuna BA (2011) Nanoparticles and Their Potential Application as Antimicrobials, Science against Microbial Pathogens: Communicating Current Research and Technological Advances. In: Méndez-Vilas, A., Ed., Formatex, Microbiology Series 1, Spain, 197–209.Google Scholar
  42. 42.
    Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590CrossRefGoogle Scholar
  43. 43.
    Retchkiman-Schabes PS, Canizal G, Becerra-Herrera R, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29:95–99CrossRefGoogle Scholar
  44. 44.
    Rupareli JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–771CrossRefGoogle Scholar
  45. 45.
    Sadiq M, Chowdhury B, Chandrasekaran N, Mukherjee A (2009) Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine 5:282–286CrossRefGoogle Scholar
  46. 46.
    Saha B (2007) In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett 2:614–622CrossRefGoogle Scholar
  47. 47.
    Sarkar S, Jana AD, Samanta SK, Mostafa G (2007) Facile synthesis of silver nanoparticles with highly efficient anti-microbial property. Polyhedron 26:4419–4426CrossRefGoogle Scholar
  48. 48.
    Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology methods and literature. Int J Nanomedicine 7:2767–2781Google Scholar
  49. 49.
    Sergeev BM, Kasaikin VA, Litmanovich EA, Sergeev GB, Prusov AN (1999) Cryochemical synthesis and properties of silver nanoparticle dispersions stabilised by poly(2-dimethylaminoethyl methacrylate). Mendeleev Commun 9(4):130–132CrossRefGoogle Scholar
  50. 50.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  51. 51.
    Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO (1974) Antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother 6:637–642CrossRefGoogle Scholar
  52. 52.
    Stoimenov PK (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686CrossRefGoogle Scholar
  53. 53.
    Talebi J, Halladj R, Askari S (2010) Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate. J Mater Sci 45:3318–3324CrossRefGoogle Scholar
  54. 54.
    Tong D, Wu P, Su PK, Wang DQ, Tian HY (2012) Preparation of zinc oxide nanospheres by solution plasma process and their optical property, photocatalytic and antibacterial activities. Mater Lett 70:94–97CrossRefGoogle Scholar
  55. 55.
    Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418CrossRefGoogle Scholar
  56. 56.
    Whitesides GM (2003) The ‘right’ size in nanobiotechnology. Nat Biotechnol 21:1161–1165CrossRefGoogle Scholar
  57. 57.
    Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. J Adv Mater 18:1109–1120CrossRefGoogle Scholar
  58. 58.
    Wist J, Sanabria J, Dierolf C, Torres W, Pulgarin C (2004) Evaluation of photocatalytic disinfection of crude water for drinking water production journal of photochemistry and photobiology a. Chemistry 147:241–246Google Scholar
  59. 59.
    Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331CrossRefGoogle Scholar
  60. 60.
    Yoshida K, Tanagawa M, Atsuta M (1999) Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J Biomed Mater Res 47:516–522CrossRefGoogle Scholar
  61. 61.
    Yoshimura M, Namura S, Akamaysu H, Horio T (1994) Antimicrobial effects of phototherapy and photochemotherapy in vivo and in vitro. Br J Dermatol 135:528–532CrossRefGoogle Scholar
  62. 62.
    Zhang Q, Li N, Goebl J, Lu ZD, Yin YD (2011) A systematic study of the synthesis of silver nanoplates is citrate a “magic” reagent? J Am Chem Soc 133:18931–18939CrossRefGoogle Scholar
  63. 63.
    Zhu JJ, Liao XH, Zhao XN, Chen HY (2001) Preparation of silver nanorods by electrochemical methods. Mater Lett 49:91–95CrossRefGoogle Scholar
  64. 64.
    Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Meenakshisundaram Swaminathan
    • 1
    Email author
  • Naresh Kumar Sharma
    • 2
  1. 1.Chemistry, International Research CentreKalasalingam UniversityMaduraiIndia
  2. 2.Department of BiotechnologyKalasalingam UniversityMaduraiIndia

Personalised recommendations