Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Steroid Receptor Coactivator Family

  • Marc J. Tetel
  • Pui Man Rosalind Lai
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_640

Synonyms

 ACTR;  AIB1;  GRIP1;  NcoA-1;  NCoA-2;  pCIP;  RAC3;  SRC-1;  SRC-2;  SRC-3;  TIF2;  TRAM-1

Historical Background

Steroid hormones have profound effects on physiology and behavior. Most of these biological effects of steroid hormones are mediated through their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. These receptors can act in a classic genomic mechanism by interacting directly with DNA to alter transcription or at the membrane to rapidly activate cytoplasmic signaling pathways (Tetel and Lange 2009). In the classic genomic mechanism of action, nuclear receptor coregulators act to enhance (coactivators) or repress (corepressors) the transcriptional activity of these receptors. While over 300 coactivators have been identified to function in receptor transcription, the role of these coactivators in a wide range of human diseases is becoming better understood (Lonard et al. 2010). This review will focus...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

Studies contributed by the author’s laboratory were supported by grants from National Science Foundation IBN 0080818 and National Institutes of Health R01 DK61935 (MJT).

References

  1. Agoulnik IU, Vaid A, Nakka M, Alvarado M, Bingman WE, Erdem H, Frolov A, Smith CL, Ayala GE, Ittmann MM, Weigel NL. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res. 2006;66:10594–602.PubMedPubMedCentralCrossRefGoogle Scholar
  2. An BS, Selva DM, Hammond GL, Rivero-Muller A, Rahman N, Leung PC. Steroid receptor coactivator-3 is required for progesterone receptor trans-activation of target genes in response to gonadotropin-releasing hormone treatment of pituitary cells. J Biol Chem. 2006;281:20817–24.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science. 1997;277:965–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Apostolakis EM, Ramamurphy M, Zhou D, Onate S, O’Malley B. Acute disruption of select steroid receptor coactivators prevents reproductive behavior in rats and unmasks genetic adaptation in knockout mice. Mol Endocrinol. 2002;16:1511–23.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Auger AP, Tetel MJ, McCarthy MM. Steroid receptor coactivator-1 mediates the development of sex specific brain morphology and behavior. Proc Natl Acad Sci USA. 2000;97:7551–5.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bautista S, Valles H, Walker RL, Anzick S, Zeillinger R, Meltzer P, Theillet C. In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin Cancer Res. 1998;4:2925–9.PubMedPubMedCentralGoogle Scholar
  7. Chopra AR, Louet JF, Saha P, An J, Demayo F, Xu J, York B, Karpen S, Finegold M, Moore D, Chan L, Newgard CB, O’Malley BW. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke’s disease. Science. 2008;322:1395–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Culig Z, Comuzzi B, Steiner H, Bartsch G, Hobisch A. Expression and function of androgen receptor coactivators in prostate cancer. J Steroid Biochem Mol Biol. 2004;92:265–71.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Fernandez-Valdivia R, Mukherjee A, Amato P, Allred DC, Nguyen J, DeMayo FJ, Lydon JP. Progesterone-action in the murine uterus and mammary gland requires steroid receptor coactivator 2: relevance to the human. Front Biosci. 2007;12:3640–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Han SJ, Demayo FJ, Xu J, Tsai SY, Tsai MJ, O’Malley BW. Steroid receptor coactivator (SRC)-1 and SRC-3 differentially modulate tissue-specific activation functions of the progesterone receptor. Mol Endocrinol. 2006;20:45–55.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Jeong JW, Lee KY, Han SJ, Aronow BJ, Lydon JP, O’Malley BW, Demayo FJ. The p160 steroid receptor coactivator-2, SRC-2, regulates murine endometrial function and regulates progesterone-independent and -dependent gene expression. Endocrinology. 2007;148:4238–50.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Johnson AB, O’Malley BW. Steroid receptor coactivators 1, 2 and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol. 2012;348:430–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Lanz RB, Bulynko Y, Malovannaya A, Labhart P, Wang L, Li W, Qin J, Harper M, O’Malley BW. Global characterization of transcriptional impact of the SRC-3 coregulator. Mol Endocrinol (Baltim). 2010;24:859–72.CrossRefGoogle Scholar
  14. Lonard DM, Kumar R, O’Malley BW. Minireview: the SRC family of coactivators: an entree to understanding a subset of polygenic diseases? Mol Endocrinol (Baltim). 2010;24:279–85.CrossRefGoogle Scholar
  15. Louet JF, O’Malley BW. Coregulators in adipogenesis: what could we learn from the SRC (p160) coactivator family? Cell Cycle. 2007;6:2448–52.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Molenda HA, Griffin AL, Auger AP, McCarthy MM, Tetel MJ. Nuclear receptor coactivators modulate hormone-dependent gene expression in brain and female reproductive behavior in rats. Endocrinology. 2002;143:436–44.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Molenda-Figueira HA, Williams CA, Griffin AL, Rutledge EM, Blaustein JD, Tetel MJ. Nuclear receptor coactivators function in estrogen receptor- and progestin receptor-dependent aspects of sexual behavior in female rats. Horm Behav. 2006;50:383–92.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Molenda-Figueira HA, Murphy SD, Shea KL, Siegal NK, Zhao Y, Chadwick JG, Denner LA, Tetel MJ. Steroid receptor coactivator-1 from brain physically interacts differentially with steroid receptor subtypes. Endocrinology. 2008;149:5272–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Nishihara E, Yoshida-Kimoya H, Chan C, Liao L, Davis RL, O’Malley BW, Xu J. SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J Neurosci. 2003;23:213–22.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Qin L, Chen X, Wu Y, Feng Z, He T, Wang L, Liao L, Xu J. Steroid receptor coactivator-1 upregulates integrin a5 expression to promote breast cancer cell adhesion and migration. Cancer Res. 2011;71:1742–51.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Suzuki H, Ueda T, Ichikawa T, Ito H. Androgen receptor involvement in the progression of prostate cancer. Endocr Relat Cancer. 2003;10:209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Tetel MJ, Lange CA. Molecular genomics of progestin actions. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT, editors. Hormones, brain and behavior. San Diego: Academic; 2009. p. 1439–65.CrossRefGoogle Scholar
  23. Tetel MJ, Auger AP, Charlier TD. Who’s in charge? Nuclear receptor coactivator and corepressor function in brain and behavior. Front Neuroendocrinol. 2009;30:328–42.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Tognoni CM, Chadwick Jr JG, Ackeifi CA, Tetel MJ. Nuclear receptor coactivators are coexpressed with steroid receptors and regulated by estradiol in mouse brain. Neuroendocrinology. 2011;94(1):49–57.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Weiss RE, Xu J, Ning G, Pohlenz J, O’Malley BW, Refetoff S. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. EMBO J. 1999;18:1900–4.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Xu J, Qiu Y, Demayo FJ, Tsai SY, Tsai MJ, O’Malley BW. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science. 1998;279:1922–5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Xu J, Wu RC, O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer. 2009;9:615–30.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Yan J, Erdem H, Li R, Cai Y, Ayala G, Ittmann M, Yu-Lee LY, Tsai SY, Tsai MJ. Steroid receptor coactivator-3/AIB1 promotes cell migration and invasiveness through focal adhesion turnover and matrix metalloproteinase expression. Cancer Res. 2008;68:5460–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Yore MA, Im D, Webb LK, Zhao Y, Chadwick JG, Molenda-Figueira HA, Haidacher SJ, Denner L, Tetel MJ. Steroid receptor coactivator-2 expression in brain and physical associations with steroid receptors. Neuroscience. 2010;169:1017–28.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Zou JX, Zhong Z, Shi XB, Tepper CG, deVere White RW, Kung HJ, Chen H. ACTR/AIB1/SRC-3 and androgen receptor control prostate cancer cell proliferation and tumor growth through direct control of cell cycle genes. Prostate. 2006;66:1474–86.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Neuroscience ProgramWellesley CollegeWellesleyUSA
  2. 2.Harvard Medical SchoolBostonUSA