Skip to main content

FoxO1

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Signaling Molecules

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117:421–6.

    Article  PubMed  CAS  Google Scholar 

  • Altomonte J, et al. Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice. Am J Phys. 2003;285:E718–28.

    Article  PubMed  CAS  Google Scholar 

  • Altomonte J, et al. Foxo1 mediates insulin action on ApoC-III and triglyceride metabolism. J Clin Invest. 2004; 114: 1493–1503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asada S, et al. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal. 2007;19:519–27.

    Article  PubMed  CAS  Google Scholar 

  • Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, Wetterau JR. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr. 2000;20:663–97.

    Article  PubMed  CAS  Google Scholar 

  • Calnan DR, et al. Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Aging (Albany NY). 2012;4:462–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan DC, Watts GF, Nguyen MN, Barrett PH. Apolipoproteins C-III and A-V as predictors of very-low-density lipoprotein triglyceride and apolipoprotein B-100 kinetics. Arterioscler Thromb Vasc Biol. 2006;26:590–6.

    Article  PubMed  CAS  Google Scholar 

  • Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:651–62.

    Article  PubMed  CAS  Google Scholar 

  • Cohn JS, Patterson BW, Uffelman KD, Davignon J, Steiner G. Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab. 2004;89:3949–55.

    Article  PubMed  CAS  Google Scholar 

  • Dong XC, et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 2008; 8:65–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edgerton DS, Johnson KM, Cherrington AD. Current strategies for the inhibition of hepatic glucose production in type 2 diabetes. Front Biosci. 2009;14:1169–81.

    Article  CAS  Google Scholar 

  • Ekberg K, et al. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60h of fasting. Diabetes. 1999;48:292–8.

    Article  PubMed  CAS  Google Scholar 

  • Essers MA, et al. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science. 2005;308:1181–4.

    Article  PubMed  CAS  Google Scholar 

  • Fu W, et al. MDM2 acts downstream of p53 as an E3 ligaese to promote FOXO ubiquitination and degradation. J Biol Chem. 2009;284:13987–4000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furuyama T, et al. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem. 2004;279:34741–49.

    Article  PubMed  CAS  Google Scholar 

  • Galili N, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;5:230–5.

    Article  PubMed  CAS  Google Scholar 

  • Gordts PL, et al. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest. 2016;126:2855–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Honda Y, Honda S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 1999;13:1385–93.

    Article  PubMed  CAS  Google Scholar 

  • Housley MP, et al. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem. 2008;283:16283–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang H, Regan KM, Lou Z, Chen J, Tindall DJ. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science. 2006;314:294–7.

    Article  PubMed  CAS  Google Scholar 

  • Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature. 2004;429:562–6.

    Article  PubMed  CAS  Google Scholar 

  • IOS, et al. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat Commun. 2015;6:7079.

    Google Scholar 

  • Jang H, et al. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun. 2016;7:12180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamagate A, et al. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest. 2008;118:2347–64.

    Google Scholar 

  • Kamagate A, et al. FoxO1 links hepatic insulin action to endoplasmic reticulum stress. Endocrinology. 2010;151:3521–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karim MA, Craig RL, Wang X, Hale TC, Elbein SC. Analysis of FOXO1A as a candidate gene for type 2 diabetes. Mol Genet Metab. 2006;88:171–7.

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Ding J, Pisck E, Jhala US, Du K. COP1 functions as a FoxO1 ubiquitin E3 ligase to regulate FoxO1-mediated gene expression. J Biol Chem. 2008;283:35464–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kibbe C, Chen J, Xu G, Jing G, Shalev A. FOXO1 competes with carbohydrate response element-binding protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic beta cells. J Biol Chem. 2013;288:23194–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim MS, et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci. 2006;9:901–6.

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, et al. FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes. 2011;60:2763–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kinnunen PKJ, Ehnholm C. Effect of serum and C apolipoproteins from very low density lipoproteins on human post-heparin plasma hepatic lipase. FEBS Lett. 1976;65:354–7.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura YI, et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2005;2:153–63.

    Google Scholar 

  • Kitamura T, et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med. 2006;12:534–40.

    Article  PubMed  CAS  Google Scholar 

  • Kuo M, Zilberfarb V, Gangneux N, Christeff N, Issad T. O-GlcNAc modification of FoxO1 increases its transcriptional activity: a role in the glucotoxicity phenomenon? Biochimie. 2008a;90:679–85.

    Article  PubMed  CAS  Google Scholar 

  • Kuo M, Zilberfarb V, Gangneux N, Christeff N, Issad T. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett. 2008b;582:829–34.

    Article  PubMed  CAS  Google Scholar 

  • Lee SS, Kennedy S, Tolonen AC, Ruvkun G. DAF-16 target genes that control C. elegans life-span and metabolism. Science. 2003;300:644–7.

    Article  PubMed  CAS  Google Scholar 

  • Mann CJ, et al. Inhibitory effects of specific apolipoprotein C-III isoforms on the binding of triglyceride-rich lipoproteins to the lipolysis-stimulated receptor. J Biol Chem. 1997;272:31348–54.

    Article  PubMed  CAS  Google Scholar 

  • Martinez SC, et al. Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes. 2008;57:846–59.

    Google Scholar 

  • Matsumoto M, Han S, Kitamura T, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest. 2006;116:2464–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor foxo1 in liver. Cell Metab. 2007;6:208–16.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA. 2003;100:11285–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuzaki H, et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA. 2005;102:11278–83.

    Article  CAS  Google Scholar 

  • McConathy WJ, Gesquiere JC, Bass H, Tartar A, Fruchart JC. Inhibition of lipoprotein lipase activity by synthetic peptides of apolipoprotein C-III. J Lipid Res. 1992;33:995–1003.

    PubMed  CAS  Google Scholar 

  • Mihaylova MM, et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell. 2011;145:607–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milan G, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670.

    Google Scholar 

  • Motta MC, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116:551–63.

    Article  PubMed  CAS  Google Scholar 

  • Muller YL, et al. Assessing FOXO1A as a potential susceptibility locus for type 2 diabetes and obesity in American Indians. Obesity (Silver Spring). 2015;23:1960–65.

    Article  PubMed  CAS  Google Scholar 

  • Murphy CT, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003;424:277–83.

    Article  PubMed  CAS  Google Scholar 

  • Mussig K, et al. Association of common genetic variation in the FOXO1 gene with beta-cell dysfunction, impaired glucose tolerance, and type 2 diabetes. J Clin Endocrinol Metab. 2009;94:1353–60.

    Google Scholar 

  • Nakae J, et al. The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity. J Clin Invest 2006;116:2473–83.

    Google Scholar 

  • Perrot V, Rechler MM. The coactivator p300 directly acetylates the Forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol. 2005;19(9);2283–2298.

    Article  PubMed  CAS  Google Scholar 

  • Perry RJ, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 2015;160:745–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puig O, Tjian R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 2005;19:2435–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin W, et al. Missense mutation in APOC3 within the C-terminal lipid binding domain of human ApoC-III results in impaired assembly and secretion of triacylglycerol-rich very low density lipoproteins: evidence that ApoC-III plays a major role in the formation of lipid precursors within the microsomal lumen. J Biol Chem. 2011;286:27769–80.

    Google Scholar 

  • Qu S, et al. Aberrant Forkhead box O1 function is associated with impaired hepatic metabolism. Endocrinology. 2006;147:5641–52.

    Article  PubMed  CAS  Google Scholar 

  • Ren H, et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell. 2012;149:1314–26.

    Google Scholar 

  • Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem. 2011;286:7468–78.

    Article  PubMed  CAS  Google Scholar 

  • Taskinen MR et al. Dual metabolic defects are required to produce hypertriglyceridemia in obese subjects. Arterioscler Thromb Vasc Biol. 2011;31:2144–50.

    Article  PubMed  CAS  Google Scholar 

  • Tsunekawa S, et al. FoxO feedback control of basal IRS-2 expression in pancreatic beta-cells is distinct from that in hepatocytes. Diabetes. 2011;60:2883–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valenti L, et al. Increased expression and activity of the transcription factor Foxo1 in nonalcoholic steatohepatitis. Diabetes. 2008;57:1355–62.

    Article  PubMed  CAS  Google Scholar 

  • Wahren J, Ekberg K. Splanchnic regulation of glucose production. Annu Rev Nutr. 2007;27:329–45.

    Article  PubMed  CAS  Google Scholar 

  • Wang C, McConathy WJ, Kloer HJ, Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins: effect of apolipoprotein C-III. J Clin Invest. 1985;75:384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wuarfordt SH, Michalopoulos G, Schirmer B. The effect of human C apolipoproteins on the in vitro hepatic metabolism of triglyceride emulsions in the rat. J Biol Chem. 1982;257:14642–7.

    Google Scholar 

  • Xiao N, et al. The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells. Nat Immunol. 2014;15:657–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamagata K, et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell. 2008;32:221–231.

    Article  PubMed  CAS  Google Scholar 

  • Yan L, et al. PP2A regulates the pro-apoptotic activity of FOXO1. J Biol Chem. 2008;283:7411–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Z, et al. Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science. 2008;319:1665–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem. 2006;281:10105–117.

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, et al. FoxO1 plays an important role in regulating beta-cell compensation for insulin resistance in male mice. Endocrinology. 2016;157:1055–70.

    Google Scholar 

  • Zhao Y, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol. 2010;12:665–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Henry Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamauchi, J., Kim, D.H., Henry Dong, H. (2018). FoxO1. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_634

Download citation

Publish with us

Policies and ethics