Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Jun Yamauchi
  • Dae Hyun Kim
  • H. Henry DongEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_634



FoxO1 [NCBI Accession:NM002015] belongs to the forkhead box O family that is characterized by a highly conserved DNA binding motif, known as forkhead box or winged helix domain (Accili and Arden 2004). This family contains four distinct isoforms namely FoxO1, FoxO3, FoxO4, and FoxO6, all of which are ubiquitously expressed in the body. FoxO1, also known as FKHR (forkhead in rhabdomyosarcoma), is initially described by Galili et al. (1993) as the product of the t(2;13)(q35;q14) translocation associated with alveolar rhabdomyosarcoma, a cancer of connective tissue that usually develops in children. Subsequent studies characterize FoxO1 as a key nuclear factor that mediates the inhibitory effect of insulin or insulin-like growth factor 1 (IGF-1) on the expression of genes, whose functions are instrumental for cell growth, differentiation, oxidative stress, survival, and metabolism...

This is a preview of subscription content, log in to check access.


  1. Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117:421–6.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Altomonte J, et al. Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice. Am J Phys. 2003;285:E718–28.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Altomonte J, et al. Foxo1 mediates insulin action on ApoC-III and triglyceride metabolism. J Clin Invest. 2004; 114: 1493–1503.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asada S, et al. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal. 2007;19:519–27.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, Wetterau JR. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr. 2000;20:663–97.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Calnan DR, et al. Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Aging (Albany NY). 2012;4:462–79.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chan DC, Watts GF, Nguyen MN, Barrett PH. Apolipoproteins C-III and A-V as predictors of very-low-density lipoprotein triglyceride and apolipoprotein B-100 kinetics. Arterioscler Thromb Vasc Biol. 2006;26:590–6.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:651–62.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cohn JS, Patterson BW, Uffelman KD, Davignon J, Steiner G. Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab. 2004;89:3949–55.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dong XC, et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 2008; 8:65–76.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Edgerton DS, Johnson KM, Cherrington AD. Current strategies for the inhibition of hepatic glucose production in type 2 diabetes. Front Biosci. 2009;14:1169–81.CrossRefGoogle Scholar
  12. Ekberg K, et al. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60h of fasting. Diabetes. 1999;48:292–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Essers MA, et al. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science. 2005;308:1181–4.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fu W, et al. MDM2 acts downstream of p53 as an E3 ligaese to promote FOXO ubiquitination and degradation. J Biol Chem. 2009;284:13987–4000.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Furuyama T, et al. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem. 2004;279:34741–49.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Galili N, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;5:230–5.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Gordts PL, et al. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest. 2016;126:2855–66.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Honda Y, Honda S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 1999;13:1385–93.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Housley MP, et al. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem. 2008;283:16283–92.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Huang H, Regan KM, Lou Z, Chen J, Tindall DJ. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science. 2006;314:294–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature. 2004;429:562–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. IOS, et al. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat Commun. 2015;6:7079.Google Scholar
  23. Jang H, et al. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun. 2016;7:12180.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kamagate A, et al. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest. 2008;118:2347–64.Google Scholar
  25. Kamagate A, et al. FoxO1 links hepatic insulin action to endoplasmic reticulum stress. Endocrinology. 2010;151:3521–35.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Karim MA, Craig RL, Wang X, Hale TC, Elbein SC. Analysis of FOXO1A as a candidate gene for type 2 diabetes. Mol Genet Metab. 2006;88:171–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kato S, Ding J, Pisck E, Jhala US, Du K. COP1 functions as a FoxO1 ubiquitin E3 ligase to regulate FoxO1-mediated gene expression. J Biol Chem. 2008;283:35464–73.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kibbe C, Chen J, Xu G, Jing G, Shalev A. FOXO1 competes with carbohydrate response element-binding protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic beta cells. J Biol Chem. 2013;288:23194–202.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kim MS, et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci. 2006;9:901–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kim DH, et al. FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes. 2011;60:2763–74.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kinnunen PKJ, Ehnholm C. Effect of serum and C apolipoproteins from very low density lipoproteins on human post-heparin plasma hepatic lipase. FEBS Lett. 1976;65:354–7.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kitamura YI, et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2005;2:153–63.Google Scholar
  33. Kitamura T, et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med. 2006;12:534–40.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kuo M, Zilberfarb V, Gangneux N, Christeff N, Issad T. O-GlcNAc modification of FoxO1 increases its transcriptional activity: a role in the glucotoxicity phenomenon? Biochimie. 2008a;90:679–85.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kuo M, Zilberfarb V, Gangneux N, Christeff N, Issad T. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett. 2008b;582:829–34.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lee SS, Kennedy S, Tolonen AC, Ruvkun G. DAF-16 target genes that control C. elegans life-span and metabolism. Science. 2003;300:644–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Mann CJ, et al. Inhibitory effects of specific apolipoprotein C-III isoforms on the binding of triglyceride-rich lipoproteins to the lipolysis-stimulated receptor. J Biol Chem. 1997;272:31348–54.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Martinez SC, et al. Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes. 2008;57:846–59.Google Scholar
  39. Matsumoto M, Han S, Kitamura T, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest. 2006;116:2464–72.PubMedPubMedCentralGoogle Scholar
  40. Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor foxo1 in liver. Cell Metab. 2007;6:208–16.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA. 2003;100:11285–90.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Matsuzaki H, et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA. 2005;102:11278–83.CrossRefGoogle Scholar
  43. McConathy WJ, Gesquiere JC, Bass H, Tartar A, Fruchart JC. Inhibition of lipoprotein lipase activity by synthetic peptides of apolipoprotein C-III. J Lipid Res. 1992;33:995–1003.PubMedPubMedCentralGoogle Scholar
  44. Mihaylova MM, et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell. 2011;145:607–21.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Milan G, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670.Google Scholar
  46. Motta MC, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116:551–63.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Muller YL, et al. Assessing FOXO1A as a potential susceptibility locus for type 2 diabetes and obesity in American Indians. Obesity (Silver Spring). 2015;23:1960–65.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Murphy CT, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003;424:277–83.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Mussig K, et al. Association of common genetic variation in the FOXO1 gene with beta-cell dysfunction, impaired glucose tolerance, and type 2 diabetes. J Clin Endocrinol Metab. 2009;94:1353–60.Google Scholar
  50. Nakae J, et al. The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity. J Clin Invest 2006;116:2473–83.Google Scholar
  51. Perrot V, Rechler MM. The coactivator p300 directly acetylates the Forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol. 2005;19(9);2283–2298.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Perry RJ, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 2015;160:745–58.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Puig O, Tjian R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 2005;19:2435–46.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Qin W, et al. Missense mutation in APOC3 within the C-terminal lipid binding domain of human ApoC-III results in impaired assembly and secretion of triacylglycerol-rich very low density lipoproteins: evidence that ApoC-III plays a major role in the formation of lipid precursors within the microsomal lumen. J Biol Chem. 2011;286:27769–80.Google Scholar
  55. Qu S, et al. Aberrant Forkhead box O1 function is associated with impaired hepatic metabolism. Endocrinology. 2006;147:5641–52.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ren H, et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell. 2012;149:1314–26.Google Scholar
  57. Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem. 2011;286:7468–78.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Taskinen MR et al. Dual metabolic defects are required to produce hypertriglyceridemia in obese subjects. Arterioscler Thromb Vasc Biol. 2011;31:2144–50.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Tsunekawa S, et al. FoxO feedback control of basal IRS-2 expression in pancreatic beta-cells is distinct from that in hepatocytes. Diabetes. 2011;60:2883–91.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Valenti L, et al. Increased expression and activity of the transcription factor Foxo1 in nonalcoholic steatohepatitis. Diabetes. 2008;57:1355–62.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Wahren J, Ekberg K. Splanchnic regulation of glucose production. Annu Rev Nutr. 2007;27:329–45.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Wang C, McConathy WJ, Kloer HJ, Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins: effect of apolipoprotein C-III. J Clin Invest. 1985;75:384.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Wuarfordt SH, Michalopoulos G, Schirmer B. The effect of human C apolipoproteins on the in vitro hepatic metabolism of triglyceride emulsions in the rat. J Biol Chem. 1982;257:14642–7.Google Scholar
  64. Xiao N, et al. The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells. Nat Immunol. 2014;15:657–66.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Yamagata K, et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell. 2008;32:221–231.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Yan L, et al. PP2A regulates the pro-apoptotic activity of FOXO1. J Biol Chem. 2008;283:7411–20.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Yuan Z, et al. Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science. 2008;319:1665–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Zhang W, et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem. 2006;281:10105–117.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Zhang T, et al. FoxO1 plays an important role in regulating beta-cell compensation for insulin resistance in male mice. Endocrinology. 2016;157:1055–70.Google Scholar
  70. Zhao Y, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol. 2010;12:665–75.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Endocrinology and Diabetes, Department of PediatricsChildren’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Molecular Inflammation Research Center for Aging Intervention (MRCA)College of Pharmacy, Pusan National UniversityBusanKorea