Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • John H. WhiteEmail author
  • Mario R. Calderon
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_621


Historical Background

Gene expression is a fundamental part of cell biology as it initially produces an mRNA transcript that ultimately results in a functional protein. Within this process, gene transcription is a tightly controlled mechanism in cell nuclei through the action of specific DNA-binding transcription factors and an array of ancillary proteins known as co-activators or corepressors, depending on whether they act to stimulate or repress transcription. In general, most co-activators have histone acetyltransferase (HAT) activity, which acts in part to loosen the association of positively charged histones with DNA, facilitating chromatin remodeling and recruitment of the transcriptional machinery. On the other hand, corepressors often recruit histone deacetylases (HDACs) or methyltransferases, which reinforce the structural integrity of the...

This is a preview of subscription content, log in to check access.


  1. Abedin SA, Thorne JL, Battaglia S, Maguire O, Hornung LB, Doherty AP, et al. Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells. Carcinogenesis. 2009;30:449–56.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Cavailles V, Dauvois S, L’Horset F, Lopez G, Hoare S, Kushner PJ, et al. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 1995;14:3741–51.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Chinnadurai G. CtBP family proteins: more than transcriptional corepressors. BioEssays. 2003;25:9–12.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chinnadurai G. CtIP, a candidate tumor susceptibility gene is a team player with luminaries. Biochim Biophys Acta. 2006;1765:67–73.PubMedCentralPubMedGoogle Scholar
  5. Fasano CA, Dimos JT, Ivanova NB, Lowry N, Lemischka IR, Temple S. shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell. 2007;1:87–99.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Fernandes I, Bastien Y, Wai T, Nygard K, Lin R, Cormier O, et al. Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms. Mol Cell. 2003;11:139–50.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007;8:947–56.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Kaipparettu BA, Malik S, Konduri SD, Liu W, Rokavec M, van der Kuip H, et al. Estrogen-mediated downregulation of CD24 in breast cancer cells. Int J Cancer. 2008;123:66–72.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Kunieda T, Park JM, Takeuchi H, Kubo T. Identification and characterization of Mlr1,2: two mouse homologues of Mblk-1, a transcription factor from the honeybee brain(1). FEBS Lett. 2003;535:61–5.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Lee CH, Chinpaisal C, Wei LN. Cloning and characterization of mouse RIP140, a corepressor for nuclear orphan receptor TR2. Mol Cell Biol. 1998;18:6745–55.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Palijan A, Fernandes I, Bastien Y, Tang L, Verway M, Kourelis M, et al. Function of Histone deacetylase 6 as a cofactor of nuclear receptor coregulator LCoR. J Biol Chem. 2009a;284(44):30264–74.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Palijan A, Fernandes I, Verway M, Kourelis M, Bastien Y, Tavera-Mendoza LE, et al. Ligand-dependent corepressor LCoR is an attenuator of progesterone-regulated gene expression. J Biol Chem. 2009b;284(44):30275–87.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Pepe GJ, Albrecht ED. Actions of placental and fetal adrenal steroid hormones in primate pregnancy. Endocr Rev. 1995;16:608–48.PubMedCentralPubMedGoogle Scholar
  14. Perissi V, Rosenfeld MG. Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol. 2005;6:542–54.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S, et al. Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene. 2005;24:4531–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Schuettengruber B, Cavalli G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development. 2009;136:3531–42.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Sewalt RG, Gunster MJ, van der Vlag J, Satijn DP, Otte AP. C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol. 1999;19:777–87.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Shi Y, Sawada J, Sui G, El Affar B, Whetstine JR, Lan F, et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature. 2003;422:735–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature. 2007;446:882–7.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Yang XJ, Seto E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Dev. 2003;13:143–53.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of PhysiologyMcGill University McIntyre Medical Sciences BuildingMontréalCanada