Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Benjamin J. Gosney
  • Christian R. Robinson
  • Venkateswarlu KanamarlapudiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_609


Historical Background

ADAP1 (ADP-ribosylation factor [ARF] GTPase activating protein [GAP] with dual pleckstrin homology (PH) domains 1) was initially characterized from pig cerebellum and identified as a 42 kDa protein that binds with high affinity to phosphatidylinositol (3,4,5)-triphosphate (PIP 3) or its inositol head group, inositol 1,3,4,5-tetrakisphosphate (IP 4) (Reiser et al. 1991). Hence, it was originally named PIP 3/IP 4-binding protein (PIP3BP/p42IP4) and has also been called Centaurin-α1 (Hammonds-Odie et al. 1996; Stricker et al. 1997; Tanaka et al. 1999). It has been renamed ADAP1, which more accurately describe the structure and function of this protein (Kahn et al. 2008). The membrane lipid PIP 3 and the water-soluble ligand IP 4both serve as signal transducers that link extracellular stimuli to numerous intracellular signaling cascades required for cell...
This is a preview of subscription content, log in to check access.


  1. Aggensteiner M, Reiser G. Expression of the brain-specific membrane adapter protein p42IP4/centaurin alpha, a Ins(1,3,4,5)P4/PtdIns(3,4,5)P3 binding protein, in developing rat brain. Brain Res Dev Brain Res. 2003;142:77–87.PubMedCrossRefGoogle Scholar
  2. Aggensteiner M, Stricker R, Reiser G. Identification of rat brain p42(IP4), a high-affinity inositol(1,3,4, 5)tetrakisphosphate/phosphatidylinositol(3,4,5)trisphosphate binding protein. Biochim Biophys Acta. 1998;1387:117–28.PubMedCrossRefGoogle Scholar
  3. Bernstein HG, Stricker R, Dobrowolny H, Trübner K, Bogerts B, Reiser G. Histochemical evidence for wide expression of the metalloendopeptidase nardilysin in human brain neurons. Neurobiologia. 2007;146:1513–23.Google Scholar
  4. Borrmann C, Stricker R, Reiser G. Retinoic acid-induced upregulation of the metalloendopeptidase nardilysin is accelerated by co-expression of the brain-specific protein p42IP4 (centaurin α1; ADAP1) in neuroblastoma cells. Neurochem Int. 2011a;59:936–44.PubMedCrossRefGoogle Scholar
  5. Borrmann C, Stricker R, Reiser G. Tubulin potentiates the interaction of the metalloendopeptidase nardilysin with the neuronal scaffold protein p42IP4/centaurin-α1 (ADAP1). Cell Tissue Res. 2011b;346:89–98.PubMedCrossRefGoogle Scholar
  6. Chanda SK, White S, Orth AP, Reisdorph R, Miraglia L, Thomas RS, et al. Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc Natl Acad Sci U S A. 2003;100:12153–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Davidson AC, Humphreys D, Brooks ABE, Hume PJ, Koronakis V. The Arf GTPase-activating protein family is exploited by salmonella enterica Serovar Typhimurium to invade nonphagocytic host cells. mBio. 2015;6:e02253–14.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Dowd GC, Bhalla M, Kean B, Thomas R, Ireton K. Role of host type IA phosphoinositide 3-kinase pathway components in invasin-mediated internalization of Yersinia enterocolitica. Infect Immun. 2016;84:1826–41.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dubois T, Howell S, Zemlickova E, Aitken A. Identification of casein kinase I alpha interacting protein partners. FEBS Lett. 2002;517:167–71.PubMedCrossRefGoogle Scholar
  10. Dubois T, Zemlickova E, Howell S, Aitken A. Centaurin-alpha 1 associates in vitro and in vivo with nucleolin. Biochem Biophys Res Commun. 2003;301:502–8.PubMedCrossRefGoogle Scholar
  11. Galvita A, Grachev D, Azarashvili T, Baburina Y, Krestinina O, Stricker R, et al. The brain-specific protein, p42(IP4) (ADAP 1) is localized in mitochondria and involved in regulation of mitochondrial Ca2+. J Neurochem. 2009;109:1701–13.PubMedCrossRefGoogle Scholar
  12. Haase A, Nordmann C, Sedehizade F, Borrmann C, Reiser G. RanBPM a novel interaction partner of the brain-specific protein p42IP4/centaurin alpha-1. J Neurochem. 2008;105:2237–48.PubMedCrossRefGoogle Scholar
  13. Hammonds-Odie LP, Jackson TR, Profit AA, Blader IJ, Turck CW, Prestwich GD, et al. Identification and cloning of centaurin-alpha. A novel phosphatidylinositol 3,4,5-trisphosphate-binding protein from rat brain. J Biol Chem. 1996;271:18859–68.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hanck T, Stricker R, Sedehizade F, Reiser G. Identification of gene structure and subcellular localization of human centaurin alpha 2, and p42IP4, a family of two highly homologous, Ins 1,3,4,5-P4−/PtdIns 3,4,5-P3-binding, adapter proteins. J Neurochem. 2004;88:326–36.PubMedCrossRefGoogle Scholar
  15. Hayashi H, Matsuzaki O, Muramatsu S, Tsuchiya Y, Harada T, Suzuki Y, et al. Centaurin-alpha1 is a phosphatidylinositol 3-kinase-dependent activator of ERK1/2 mitogen-activated protein kinases. J Biol Chem. 2006;281:1332–7.PubMedCrossRefGoogle Scholar
  16. Horiguchi K, Hanada T, Fukui Y, Chishti AH. Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity. J Cell Biol. 2006;174:425–36.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Kahn RA, Bruford E, Inoue H, Logsdon JM, Nie Z, Premont RT, et al. Consensus nomenclature for the human ArfGAP domain-containing proteins. J Cell Biol. 2008;182:1039–44.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kalscheuer VM, Musante L, Fang C, Hoffmann K, Fuchs C, Carta E, et al. A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation. Hum Mutat. 2009;30:61–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kanamarlapudi V. Centaurin-alpha1 and KIF13B kinesin motor protein interaction in ARF6 signalling. Biochem Soc Trans. 2005;33:1279–81.PubMedCrossRefGoogle Scholar
  20. Kreutz MR, Böckers TM, Sabel BA, Hülser E, Stricker R, Reiser G. Expression and subcellular localization of p42IP4/centaurin-alpha, a brain-specific, high-affinity receptor for inositol 1,3,4,5-tetrakisphosphate and phosphatidylinositol 3,4,5-trisphosphate in rat brain. Eur J Neurosci. 1997a;9:2110–24.PubMedCrossRefGoogle Scholar
  21. Kreutz MR, Böckers TM, Sabel BA, Stricker R, Hülser E, Reiser G. Localization of a 42-kDa inositol 1,3,4,5-tetrakisphosphate receptor protein in retina and change in expression after optic nerve injury. Brain Res Mol Brain Res. 1997b;45:283–93.PubMedCrossRefGoogle Scholar
  22. Lawrence J, Mundell SJ, Yun H, Kelly E, Venkateswarlu K. Centaurin-alpha 1, an ADP-ribosylation factor 6 GTPase activating protein, inhibits beta 2-adrenoceptor internalization. Mol Pharmacol. 2005;67:1822–8.PubMedCrossRefGoogle Scholar
  23. Moore CD, Thacker EE, Larimore J, Gaston D, Underwood A, Kearns B, et al. The neuronal Arf GAP centaurin alpha1 modulates dendritic differentiation. J Cell Sci. 2007;120:2683–93.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Noseda R, Guerrero-Valero M, Alberizzi V, Previtali SC, Sherman DL, Palmisano M, et al. Kif13b regulates PNS and CNS myelination through the Dlg1 scaffold. PLoS Biol. 2016;14:e1002440.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Pellon-Cardenas O, Clancy J, Uwimpuhwe H, D’Souza-Schorey C. ARF6-regulated endocytosis of growth factor receptors links cadherin-based adhesion to canonical Wnt signaling in epithelia. Mol Cell Biol. 2013;33:2963–75.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Rao VR, Corradetti MN, Chen J, Peng J, Yuan J, Prestwich GD, et al. Expression cloning of protein targets for 3-phosphorylated phosphoinositides. J Biol Chem. 1999;274:37893–900.PubMedCrossRefGoogle Scholar
  27. Reiser G, Bernstein HG. Neurons and plaques of Alzheimer’s disease patients highly express the neuronal membrane docking protein p42IP4/centaurin alpha. Neuroreport. 2002;13:2417–9.PubMedCrossRefGoogle Scholar
  28. Reiser G, Bernstein HG. Altered expression of protein p42IP4/centaurin-alpha 1 in Alzheimer’ disease brains and possible interaction of p42IP4 with nucleolin. Neuroreport. 2004;15:147–8.PubMedCrossRefGoogle Scholar
  29. Reiser G, Schafer R, Donie F, Hulser E, Nehls-Sahabandu M, Mayr GW. A high-affinity inositol 1,3,4,5-tetrakisphosphate receptor protein from brain is specifically labelled by a newly synthesized photoaffinity analogue, N-(4-azidosalicyl)aminoethanol(1)-1-phospho-D-myo-inositol 3,4,5-trisphosphate. Biochem J. 1991;280(Pt 2):533–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Reiser G, Striggow F, Hackmann C, Schwegler H, Yilmazer-Hanke DM. Short-term down-regulation of the brain-specific, PtdIns(3,4,5)P3/Ins(1,3,4,5)P4-binding, adapter protein, p42IP4/centaurin-alpha 1 in rat brain after acoustic and electric stimulation. Neurochem Int. 2004;45:89–93.PubMedCrossRefGoogle Scholar
  31. Schweitzer JK, Sedgwick AE, D'Souza-Schorey C. ARF6-mediated endocytic recycling impacts cell movement, cell division and lipid homeostasis. Semin Cell Dev Biol. 2011;22:39–47.PubMedCrossRefGoogle Scholar
  32. Sedehizade F, Hanck T, Stricker R, Horstmayer A, Bernstein HG, Reiser G. Cellular expression and subcellular localization of the human Ins(1,3,4,5)P(4)-binding protein, p42(IP4), in human brain and in neuronal cells. Brain Res Mol Brain Res. 2002;99:1–11.PubMedCrossRefGoogle Scholar
  33. Sedehizade F, von Klot C, Hanck T, Reiser G. p42(IP4)/centaurin alpha1, a brain-specific PtdIns(3,4,5)P3/Ins(1,3,4,5)P4-binding protein: membrane trafficking induced by epidermal growth factor is inhibited by stimulation of phospholipase C-coupled thrombin receptor. Neurochem Res. 2005;30:1319–30.PubMedCrossRefGoogle Scholar
  34. Stricker R, Chang YT, Chung SK, Reiser G. Determination of specificity of a high-affinity inositol 1,3,4,5-tetrakisphosphate binding site at a 42 kDa receptor protein, p42IP4: comparison of affinities of all inositoltris-,-tetrakis-, and -pentakisphosphate regioisomers. Biochem Biophys Res Commun. 1996;228:596–604.PubMedCrossRefGoogle Scholar
  35. Stricker R, Hülser E, Fischer J, Jarchau T, Walter U, Lottspeich F, et al. cDNA cloning of porcine p42IP4, a membrane-associated and cytosolic 42 kDa inositol(1,3,4,5)tetrakisphosphate receptor from pig brain with similarly high affinity for phosphatidylinositol (3,4,5)P3. FEBS Lett. 1997;405:229–36.PubMedCrossRefGoogle Scholar
  36. Stricker R, Vandekerckhove J, Krishna MU, Falck JR, Hanck T, Reiser G. Oligomerization controls in tissue-specific manner ligand binding of native, affinity-purified p42(IP4)/centaurin alpha1 and cytohesins-proteins with high affinity for the messengers d-inositol 1,3,4,5-tetrakisphosphate/phosphatidylinositol 3,4,5-trisphosphate. Biochim Biophys Acta. 2003;1651:102–15.PubMedCrossRefGoogle Scholar
  37. Stricker R, Chow KM, Walther D, Hanck T, Hersh LB, Reiser G. Interaction of the brain-specific protein p42IP4/centaurin-alpha1 with the peptidase nardilysin is regulated by the cognate ligands of p42IP4, PtdIns(3,4,5)P3 and Ins(1,3,4,5)P4, with stereospecificity. J Neurochem. 2006;98:343–54.PubMedCrossRefGoogle Scholar
  38. Szatmari EM, Oliverisa AF, Sumner EJ, Yasuda R. Centaurin- 1-Ras-Elk-1 signaling at mitochondria mediates amyloid-induced synaptic dysfunction. J Neurosci. 2013;33:5367–74.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Tanaka K, Horiguchi K, Yoshida T, Takeda M, Fujisawa H, Takeuchi K, et al. Evidence that a phosphatidylinositol 3,4,5-trisphosphate-binding protein can function in nucleus. J Biol Chem. 1999;274:3919–22.PubMedCrossRefGoogle Scholar
  40. Thacker EE, Kearns B, Chapman C, Hammond J, Howell A, Theibert AB. The arf6 GAP centaurin alpha-1 is a neuronal actin-binding protein which also functions via GAP-independent activity to regulate the actin cytoskeleton. Eur J Cell Biol. 2004;83:541–54.PubMedCrossRefGoogle Scholar
  41. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem. 2001;70:535–602.PubMedCrossRefGoogle Scholar
  42. Venkateswarlu K, Cullen PJ. Molecular cloning and functional characterization of a human homologue of centaurin-alpha. Biochem Biophys Res Commun. 1999;262:237–44.PubMedCrossRefGoogle Scholar
  43. Venkateswarlu K, Oatey PB, Tavaré JM, Jackson TR, Cullen PJ. Identification of centaurin-alpha1 as a potential in vivo phosphatidylinositol 3,4,5-trisphosphate-binding protein that is functionally homologous to the yeast ADP-ribosylation factor (ARF) GTPase-activating protein, Gcs1. Biochem J. 1999;340:359–63.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Venkateswarlu K, Brandom KG, Lawrence JL. Centaurin-alpha1 is an in vivo phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein for ARF6 that is involved in actin cytoskeleton organization. J Biol Chem. 2004;279:6205–8.PubMedCrossRefGoogle Scholar
  45. Venkateswarlu K, Hanada T, Chishti AH. Centaurin-alpha1 interacts directly with kinesin motor protein KIF13B. J Cell Sci. 2005;118:2471–84.PubMedCrossRefGoogle Scholar
  46. Whitley P, Gibbard AM, Koumanov F, Oldfield S, Kilgour EE, Prestwich GD, et al. Identification of centaurin-alpha2: a phosphatidylinositide-binding protein present in fat, heart and skeletal muscle. Eur J Cell Biol. 2002;81:222–30.PubMedCrossRefGoogle Scholar
  47. Zemlickova E, Dubois T, Kerai P, Clokie S, Cronshaw AD, Wakefield RI, et al. Centaurin-alpha(1) associates with and is phosphorylated by isoforms of protein kinase C. Biochem Biophys Res Commun. 2003;307:459–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Benjamin J. Gosney
    • 1
  • Christian R. Robinson
    • 1
    • 2
  • Venkateswarlu Kanamarlapudi
    • 1
    Email author
  1. 1.Institute of Life Science 1, School of MedicineSwansea UniversitySwanseaUK
  2. 2.Calon Cardio-Technology Ltd, Institute of Life Science 2Medical School, Swansea UniversitySwanseaUK