Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Toll-Like Receptor Adaptor Protein Family Members

  • Enda Shevlin
  • Sinéad M. Miggin
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_608

Synonyms

Historical Background

Toll-like receptors (TLRs) play a critical role in innate immunity by providing a frontline defense mechanism against invading pathogens such as bacteria, fungi and viruses. They accomplish this by recognising evolutionarily conserved pathogen-associated molecular patterns (PAMPs) which are...

This is a preview of subscription content, log in to check access.

References

  1. Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol. 2004;4:499–511.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bin LH, Xu LG, Shu HB. TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling. J Biol Chem. 2003;278:24526–32.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol. 2006;7:1074–81.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Dunne A, Carpenter S, Brikos C, Gray P, Strelow A, Wesche H, et al. IRAK1 and IRAK4 promote phosphorylation, ubiquitination, and degradation of MyD88 adaptor-like (Mal). J Biol Chem. 2010;285:18276–82.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, et al. Mal (MyD88-adapter-like) is required for toll-like receptor-4 signal transduction. Nature. 2001;413:78–83.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med. 2003;198:1043–55.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Gauzzi C, Del Corno M, Gessani S. Dissecting TLR3 signaling in dendritic cells. Immunobiology. 2010;215:713–23.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the toll signaling pathway. Nat Immunol. 2001;2:835–41.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signaling specificity for toll-like receptors. Nature. 2002;420:329–33.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Jenkins KA, Mansell A. TIR-containing adaptors in toll-like receptor signaling. Cytokine. 2010;49:237–44.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Johnson AC, Li X, Pearlman E. MyD88 functions as a negative regulator of TLR3/TRIF-induced corneal inflammation by inhibiting activation of c-Jun N-terminal kinase. J Biol Chem. 2008;283:3988–96.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling. Cell. 2006;125:943–55.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13:816–25.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Kenny EF, Talbot S, Gong M, Golenbock DT, Bryant CE, O’Neill LA. MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. J Immunol. 2009;183:3642–51.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J. 2009;420:1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Lysakova-Devine T, Keogh B, Harrington B, Nagpal K, Halle A, Golenbock DT, et al. Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule. J Immunol. 2010;185:4261–71.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2:253–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Miggin SM, O’Neill LA. New insights into the regulation of TLR signaling. J Leukoc Biol. 2006;80:220–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Miggin SM, Pålsson-McDermott E, Dunne A, Jefferies C, Pinteaux E, Banahan K, et al. NF-kB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proc Natl Acad Sci USA. 2007;104:3372–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Moynagh PN. The Pellino family: IRAK E3 ligases with emerging roles in innate immune signaling. Trends Immunol. 2008;30:33–42.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Nunez Miguel R, Wong J, Westoll JF, Brooks HJ, O’Neill LA, Gay NJ, et al. A dimer of the toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signaling adaptor proteins. PLoS One. 2007;2:e788.PubMedPubMedCentralCrossRefGoogle Scholar
  23. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signaling. Nat Rev Immunol. 2007;7:353–64.PubMedPubMedCentralCrossRefGoogle Scholar
  24. O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 2009;61(2):177–97.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Palsson-McDermott EM, Doyle SL, McGettrick AF, Hardy M, Husebye H, Banahan K, et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat Immunol. 2009;10:579–86.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Rhee SH. Basic and translational understandings of microbial recognition by toll-like receptors in the intestine. Neurogastroenterol Motil. 2011;17:28–34.CrossRefGoogle Scholar
  27. Sasai M, Tatematsu M, Oshiumi H, Funami K, Matsumoto M, Hatakeyama S, et al. Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the toll-like receptor 3/4 pathway. Mol Immunol. 2010;47:1283–91.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Siednienko J, Halle A, Nagpal K, Golenbock DT, Miggin SM. TLR3-mediated IFN-beta gene induction is negatively regulated by the TLR adaptor MyD88 adaptor-like. Eur J Immunol. 2010;40:3150–60.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Siednienko J, Gajanayake T, Fitzgerald KA, Moynagh P, Miggin SM. Absence of MyD88 results in enhanced TLR3-dependent phosphorylation of IRF3 and increased IFN-(beta) and RANTES production. J Immunol. 2011;186:2514–22.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Tatematsu M, Ishii A, Oshiumi H, Horiuchi M, Inagaki F, Seya T, et al. A molecular mechanism for toll-IL-1 receptor domain-containing adaptor molecule-1-mediated IRF-3 activation. J Biol Chem. 2010;285:20128–36.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ulrichts P, Bovijn C, Lievens S, Beyaert R, Tavernier J, Peelman F. Caspase-1 targets the TLR adaptor Mal at a crucial TIR-domain interaction site. J Cell Sci. 2010;123:256–65.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, et al. Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature. 2002;420:324–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Zhang Z, Kim T, Bao M, Facchinetti V, Jung SY, Ghaffari AA, et al. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity. 2011;34:866–78.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Biology, Institute of ImmunologyNational University of Ireland MaynoothMaynoothIreland