Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Yongping Wang
  • Haihua GuEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_601



Historical Background

Grb2-associated binder 2, Gab2, belongs to the Gab/DOS family of scaffolding adaptors that include mammalian  Gab1, Gab3, Drosophila Daughter of Sevenless (DOS), and Caenorhabditis elegans Suppressor of Clear 1 (SOC1) (Gu and Neel 2003; Wohrle et al. 2009). Gab1, the first identified member of this family of adaptors, was discovered in search of protein ligands for Grb2 SH3 domain (Holgado-Madruga et al. 1996). DOS was identified as a potential substrate for Corkscrew (Csw), the Drosophila ortholog of the SH2 domain containing protein tyrosine phosphatase 2 (Shp2) (Herbst et al. 1996). Gab2, the third member identified in this family, was initially cloned as a binding protein and substrate of Shp2 (Gu et al. 1998). Gab2 gene is located on human chromosome 11q14.1. Two other groups later cloned Gab2 by searching DNA database for protein with sequence homology to Gab1 (Nishida et al. 1999; Zhao et al. 1999). SOC1 was uncovered in a screen for...

This is a preview of subscription content, log in to check access.


  1. Abreu MT, Hughes WE, Mele K, Lyons RJ, Rickwood D, Browne BC, et al. Gab2 regulates cytoskeletal organization and migration of mammary epithelial cells by modulating RhoA activation. Mol Biol Cell. 2011;22:105–16.PubMedCentralCrossRefGoogle Scholar
  2. Arnaud M, Crouin C, Deon C, Loyaux D, Bertoglio J. Phosphorylation of Grb2-associated binder 2 on serine 623 by ERK MAPK regulates its association with the phosphatase SHP-2 and decreases STAT5 activation. J Immunol. 2004a;173:3962–71.PubMedCrossRefGoogle Scholar
  3. Arnaud M, Mzali R, Gesbert F, Crouin C, Guenzi C, Vermot-Desroches C, et al. Interaction of the tyrosine phosphatase SHP-2 with Gab2 regulates Rho-dependent activation of the c-fos serum response element by interleukin-2. Biochem J. 2004b;382:545–56.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aumann K, Lassmann S, Schopflin A, May AM, Wohrle FU, Zeiser R, et al. The immunohistochemical staining pattern of Gab2 correlates with distinct stages of chronic myeloid leukemia. Hum Pathol. 2011;42:719–26.PubMedCrossRefGoogle Scholar
  5. Bentires-Alj M, Gil SG, Chan R, Wang ZC, Wang Y, Imanaka N, et al. A role for the scaffolding adapter GAB2 in breast cancer. Nat Med. 2006;12:114–21.PubMedCrossRefGoogle Scholar
  6. Brown LA, Kalloger SE, Miller MA, Shih Ie M, McKinney SE, Santos JL, et al. Amplification of 11q13 in ovarian carcinoma. Genes Chromosomes Cancer. 2008;47:481–9.PubMedCrossRefGoogle Scholar
  7. Brummer T, Schramek D, Hayes VM, Bennett HL, Caldon CE, Musgrove EA, et al. Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein. J Biol Chem. 2006;281:626–37.PubMedCrossRefGoogle Scholar
  8. Brummer T, Larance M, Herrera Abreu MT, Lyons RJ, Timpson P, Emmerich CH, et al. Phosphorylation-dependent binding of 14-3-3 terminates signaling by the Gab2 docking protein. EMBO J. 2008;27:2305–16.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Crouin C, Arnaud M, Gesbert F, Camonis J, Bertoglio J. A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners. FEBS Lett. 2001;495:148–53.PubMedCrossRefGoogle Scholar
  10. Daly RJ, Gu H, Parmar J, Malaney S, Lyons RJ, Kairouz R, et al. The docking protein Gab2 is overexpressed and estrogen regulated in human breast cancer. Oncogene. 2002;21:5175–81.PubMedCrossRefGoogle Scholar
  11. Dorsey JF, Cunnick JM, Mane SM, Wu J. Regulation of the Erk2-Elk1 signaling pathway and megakaryocytic differentiation of Bcr-Abl(+) K562 leukemic cells by Gab2. Blood. 2002;99:1388–97.PubMedCrossRefGoogle Scholar
  12. Fleuren ED, O’Toole S, Millar EK, McNeil C, Lopez-Knowles E, Boulghourjian A, et al. Overexpression of the oncogenic signal transducer Gab2 occurs early in breast cancer development. Int J Cancer. 2010;127:1486–92.PubMedCrossRefGoogle Scholar
  13. Gu H, Neel BG. The “Gab” in signal transduction. Trends Cell Biol. 2003;13:122–30.PubMedCrossRefGoogle Scholar
  14. Gu H, Pratt JC, Burakoff SJ, Neel BG. Cloning of p97/Gab2, the major SHP-2 binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol Cell. 1998;2:729–40.PubMedCrossRefGoogle Scholar
  15. Gu H, Maeda H, Moon JJ, Lord JD, Yoakim M, Nelson BH, et al. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol Cell Biol. 2000;20:7109–20.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Gu H, Saito K, Klaman LD, Shen J, Fleming T, Wang Y, et al. Essential role for Gab2 in the allergic response. Nature. 2001;412:186–90.PubMedCrossRefGoogle Scholar
  17. Gu H, Botelho RJ, Yu M, Grinstein S, Neel BG. Critical role for scaffolding adapter Gab2 in Fc gamma R-mediated phagocytosis. J Cell Biol. 2003;161:1151–61.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Harkiolaki M, Tsirka T, Lewitzky M, Simister PC, Joshi D, Bird LE, et al. Distinct binding modes of two epitopes in Gab2 that interact with the SH3C domain of Grb2. Structure. 2009;17:809–22.PubMedCrossRefGoogle Scholar
  19. Herbst R, Carroll PM, Allard JD, Schilling J, Raabe T, Simon MA. Daughter of sevenless is a substrate of the phosphotyrosine phosphatase Corkscrew and functions during sevenless signaling. Cell. 1996;85:899–909.PubMedCrossRefGoogle Scholar
  20. Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ. A Grb2-associated docking protein in EGF- and insulin-receptor signaling. Nature. 1996;379:560–4.PubMedCrossRefGoogle Scholar
  21. Horst B, Gruvberger-Saal SK, Hopkins BD, Bordone L, Yang Y, Chernoff KA, et al. Gab2-mediated signaling promotes melanoma metastasis. Am J Pathol. 2009;174:1524–33.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ischenko I, Petrenko O, Gu H, Hayman MJ. Scaffolding protein Gab2 mediates fibroblast transformation by the SEA tyrosine kinase. Oncogene. 2003;22:6311–8.PubMedCrossRefGoogle Scholar
  23. Ke Y, Wu D, Princen F, Nguyen T, Pang Y, Lesperance J, et al. Role of Gab2 in mammary tumorigenesis and metastasis. Oncogene. 2007;26:4951–60.PubMedCrossRefGoogle Scholar
  24. Kong M, Mounier C, Wu J, Posner BI. Epidermal growth factor-induced phosphatidylinositol 3-kinase activation and DNA synthesis. Identification of Grb2-associated binder 2 as the major mediator in rat hepatocytes. J Biol Chem. 2000;275:36035–42.PubMedCrossRefGoogle Scholar
  25. Lee AW, States DJ. Both src-dependent and -independent mechanisms mediate phosphatidylinositol 3-kinase regulation of colony-stimulating factor 1-activated mitogen-activated protein kinases in myeloid progenitors. Mol Cell Biol. 2000;20:6779–98.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Lee SH, Jeong EG, Nam SW, Lee JY, Yoo NJ. Increased expression of Gab2, a scaffolding adaptor of the tyrosine kinase signaling, in gastric carcinomas. Pathology. 2007;39:326–9.PubMedCrossRefGoogle Scholar
  27. Liu Y, Jenkins B, Shin JL, Rohrschneider LR. Scaffolding protein Gab2 mediates differentiation signaling downstream of Fms receptor tyrosine kinase. Mol Cell Biol. 2001;21:3047–56.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Lock LS, Royal I, Naujokas MA, Park M. Identification of an atypical Grb2 carboxy-terminal SH3 domain binding site in Gab docking proteins reveals Grb2-dependent and independent recruitment of Gab1 to receptor tyrosine kinases. J Biol Chem. 2000;275(40):31536–45.PubMedCrossRefGoogle Scholar
  29. Lynch DK, Daly RJ. PKB-mediated negative feedback tightly regulates mitogenic signaling via Gab2. EMBO J. 2002;21:72–82.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Mao Y, Lee AW. A novel role for Gab2 in bFGF-mediated cell survival during retinoic acid-induced neuronal differentiation. J Cell Biol. 2005;170:305–16.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Mao D, Epple H, Uthgenannt B, Novack DV, Faccio R. PLCgamma2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest. 2006;116:2869–79.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Masson K, Liu T, Khan R, Sun J, Ronnstrand L. A role of Gab2 association in Flt3 ITD mediated Stat5 phosphorylation and cell survival. Br J Haematol. 2009;146:193–202.PubMedCrossRefGoogle Scholar
  33. Meng S, Chen Z, Munoz-Antonia T, Wu J. Participation of both Gab1 and Gab2 in the activation of the ERK/MAPK pathway by epidermal growth factor. Biochem J. 2005;391:143–51.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, et al. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell. 2005;7:179–91.PubMedCrossRefGoogle Scholar
  35. Nakaoka Y, Nishida K, Narimatsu M, Kamiya A, Minami T, Sawa H, et al. Gab family proteins are essential for postnatal maintenance of cardiac function via neuregulin-1/ErbB signaling. J Clin Invest. 2007;117:1771–81.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Neel BG, Gu H, Pao L. The “Shp”ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci. 2003;28:284–93.PubMedCrossRefGoogle Scholar
  37. Ni S, Zhao C, Feng GS, Paulson RF, Correll PH. A novel Stat3 binding motif in Gab2 mediates transformation of primary hematopoietic cells by the Stk/Ron receptor tyrosine kinase in response to Friend virus infection. Mol Cell Biol. 2007;27:3708–15.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Nishida K, Yoshida Y, Itoh M, Fukada T, Ohtani T, Shirogane T, et al. Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors. Blood. 1999;93:1809–16.PubMedGoogle Scholar
  39. Nishida K, Wang L, Morii E, Park SJ, Narimatsu M, Itoh S, et al. Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood. 2002;99:1866–9.PubMedCrossRefGoogle Scholar
  40. Nishida K, Yamasaki S, Ito Y, Kabu K, Hattori K, Tezuka T, et al. Fc{epsilon}RI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J Cell Biol. 2005;170:115–26.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Nyga R, Pecquet C, Harir N, Gu H, Dhennin-Duthille I, Regnier A, et al. Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter. Biochem J. 2005;390:359–66.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Pratt JC, Igras VE, Maeda H, Baksh S, Gelfand EW, Burakoff SJ, et al. Cutting edge: gab2 mediates an inhibitory phosphatidylinositol 3’-kinase pathway in T cell antigen receptor signaling. J Immunol. 2000;165:4158–63.PubMedCrossRefGoogle Scholar
  43. Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL, et al. GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron. 2007;54:713–20.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K, et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell. 2002;1:479–92.PubMedCrossRefGoogle Scholar
  45. Schutzman JL, Borland CZ, Newman JC, Robinson MK, Kokel M, Stern MJ. The Caenorhabditis elegans EGL-15 signaling pathway implicates a DOS-like multisubstrate adaptor protein in fibroblast growth factor signal transduction. Mol Cell Biol. 2001;21:8104–16.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Teal HE, Ni S, Xu J, Finkelstein LD, Cheng AM, Paulson RF, et al. GRB2-mediated recruitment of GAB2, but not GAB1, to SF-STK supports the expansion of Friend virus-infected erythroid progenitor cells. Oncogene. 2006;25:2433–43.PubMedCrossRefGoogle Scholar
  47. Wada T, Nakashima T, Oliveira-dos-Santos AJ, Gasser J, Hara H, Schett G, et al. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med. 2005;11:394–9.PubMedCrossRefGoogle Scholar
  48. Wohrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal. 2009;7:22.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Wolf I, Jenkins BJ, Liu Y, Seiffert M, Custodio JM, Young P, et al. Gab3, a new DOS/Gab family member, facilitates macrophage differentiation. Mol Cell Biol. 2002;22:231–44.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Yamasaki S, Nishida K, Hibi M, Sakuma M, Shiina R, Takeuchi A, et al. Docking protein Gab2 is phosphorylated by ZAP-70 and negatively regulates T cell receptor signaling by recruitment of inhibitory molecules. J Biol Chem. 2001;276:45175–83.PubMedCrossRefGoogle Scholar
  51. Yu M, Lowell CA, Neel BG, Gu H. Scaffolding adapter Grb2-associated binder 2 requires Syk to transmit signals from FcepsilonRI. J Immunol. 2006a;176:2421–9.PubMedCrossRefGoogle Scholar
  52. Yu M, Luo J, Yang W, Wang Y, Mizuki M, Kanakura Y, et al. The scaffolding adapter Gab2, via Shp-2, regulates kit-evoked mast cell proliferation by activating the Rac/JNK pathway. J Biol Chem. 2006b;281:28615–26.PubMedCrossRefGoogle Scholar
  53. Zatkova A, Schoch C, Speleman F, Poppe B, Mannhalter C, Fonatsch C, et al. GAB2 is a novel target of 11q amplification in AML/MDS. Genes Chromosomes Cancer. 2006;45:798–807.PubMedCrossRefGoogle Scholar
  54. Zhang Y, Diaz-Flores E, Li G, Wang Z, Kang Z, Haviernikova E, et al. Abnormal hematopoiesis in Gab2 mutant mice. Blood. 2007;110:116–24.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Zhao C, Yu DH, Shen R, Feng GS. Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1. J Biol Chem. 1999;274:19649–54.PubMedCrossRefGoogle Scholar
  56. Zhu QS, Robinson LJ, Roginskaya V, Corey SJ. G-CSF-induced tyrosine phosphorylation of Gab2 is Lyn kinase dependent and associated with enhanced Akt and differentiative, not proliferative, responses. Blood. 2004;103:3305–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of PathologyUniversity of Colorado DenverAuroraUSA