Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Andrea Varga
  • Manuela BaccariniEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_591


Historical Background

Raf-1, also known as C-Raf-1 or C-Raf, was identified about 30 years ago as the oncogene ( v-raf) in the murine sarcoma virus 3611 (3611-MSV) and, in parallel, in the naturally occurring avian retrovirus Mill Hill 2 (MH2). The gene was named after its enhancing effect on fibrosarcoma induction in newborn mice: Rapidly accelerated fibrosarcoma, or Raf. The sequences of the oncogenes, v-raf (derived from 3611-MSV) and v-mil (derived from MH2), were found to encode a serine/threonine protein kinase containing the catalytic, but not the N-terminal regulatory domain of the enzyme. This deletion rendered the protein constitutively active and was responsible for its transforming effect, making Raf the first oncogenic serine/threonine kinase discovered. A pseudogene ( c-raf-2) and two...
This is a preview of subscription content, log in to check access.



The authors wish to thank all the members of the Baccarini group for helpful discussions. Dr. Andrea Varga is supported by a FEBS long term fellowship. Work in the Baccarini lab is supported by funds of the Austrian National Research Fund (FWF), the Austrian Society for the Advancement of Research (FFG), the Obermann Foundation, and the European Community.


  1. Alavi AS, Acevedo L, Min W, Cheresh DA. Chemoresistance of endothelial cells induced by basic fibroblast growth factor depends on Raf-1-mediated inhibition of the proapoptotic kinase, ASK1. Cancer Res. 2007;67:2766–72.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arkenau HT, Kefford R, Long GV. Targeting BRAF for patients with melanoma. Br J Cancer. 2011;104:392–8.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baccarini M. Second nature: biological functions of the Raf-1 “kinase”. FEBS Lett. 2005;579:3271–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chen J, Fujii K, Zhang L, Roberts T, Fu H. Raf-1 promotes cell survival by antagonizing apoptosis signal- regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci U S A. 2001;98:7783–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Cichowski K, Janne PA. Drug discovery: inhibitors that activate. Nature. 2010;464:358–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ehrenreiter K, Piazzolla D, Velamoor V, Sobczak I, Small JV, Takeda J, et al. Raf-1 regulates Rho signaling and cell migration. J Cell Biol. 2005;168:955–64.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ehrenreiter K, Kern F, Velamoor V, Meissl K, Galabova-Kovacs G, Sibilia M, et al. Raf-1 addiction in Ras-induced skin carcinogenesis. Cancer Cell. 2009;16:149–60.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Emerson SD, Madison VS, Palermo RE, Waugh DS, Scheffler JE, Tsao KL, et al. Solution structure of the Ras-binding domain of c-Raf-1 and identification of its Ras interaction surface. Biochemistry. 1995;34:6911–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Galabova-Kovacs G, Kolbus A, Matzen D, Meissl K, Piazzolla D, Rubiolo C, et al. ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle. 2006;5:1514–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464:431–5.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140:209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Kern F, Niault T, Baccarini M. Ras and Raf pathways in epidermis development and carcinogenesis. Br J Cancer. 2011;104:229–34.PubMedPubMedCentralCrossRefGoogle Scholar
  13. King AJ, Patrick DR, Batorsky RS, Ho ML, Do HT, Zhang SY, et al. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res. 2006;66:11100–5.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005;6:827–37.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Maurer G, Tarkowski B, Baccarini M. Raf kinases in cancer – roles and therapeutic opportunities. Oncogene. In press 2011.Google Scholar
  16. McKay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. Oncogene. 2007;26:3113–21.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Mercer K, Giblett S, Oakden A, Brown J, Marais R, Pritchard C. A-Raf and Raf-1 work together to influence transient ERK phosphorylation and Gl/S cell cycle progression. Oncogene. 2005;24:5207–17.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Mott HR, Carpenter JW, Zhong S, Ghosh S, Bell RM, Campbell SL. The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site. Proc Natl Acad Sci U S A. 1996;93:8312–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Niault TS, Baccarini M. Targets of Raf in tumorigenesis. Carcinogenesis. 2010;31:1165–74.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Niault T, Sobczak I, Meissl K, Weitsman G, Piazzolla D, Maurer G, et al. From autoinhibition to inhibition in trans: the Raf-1 regulatory domain inhibits Rok-alpha kinase activity. J Cell Biol. 2009;187:335–42.PubMedPubMedCentralCrossRefGoogle Scholar
  21. O’Neill E, Rushworth L, Baccarini M, Kolch W. Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science. 2004;306:2267–70.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19:491–505.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Piazzolla D, Meissl K, Kucerova L, Rubiolo C, Baccarini M. Raf-1 sets the threshold of Fas sensitivity by modulating Rok-{alpha} signaling. J Cell Biol. 2005;171:1013–22.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Romano D, Matallanas D, Weitsman G, Preisinger C, Ng T, Kolch W. Proapoptotic kinase MST2 coordinates signaling crosstalk between RASSF1A, Raf-1, and Akt. Cancer Res. 2010;70:1195–203.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5:875–85.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Wimmer R, Baccarini M. Partner exchange: protein-protein interactions in the Raf pathway. Trends Biochem Sci. 2010;35:660–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Yamaguchi O, Watanabe T, Nishida K, Kashiwase K, Higuchi Y, Takeda T, et al. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. J Clin Invest. 2004;114:937–43.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Microbiology and Immunobiology, Center for Molecular BiologyUniversity of Vienna, Max F. Perutz LaboratoriesViennaAustria