Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

CD47

  • David D. Roberts
  • Jeffrey S. Isenberg
  • David R. Soto-Pantoja
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_573

Synonyms

Historical Background

CD47 was first identified in 1987 as an antigen that is missing in red blood cells of patients with Rhesus (Rh)-null hemolytic anemia (see the following reviews for CD47 source references unless otherwise cited: Rogers et al. 2012; Soto-Pantoja et al. 2015; Soto-Pantoja et al. 2013). Loss of CD47 is not the primary cause of this disease, but CD47 closely associates with the Rh complex on red blood cells. Independently, the same protein was identified as an antigen, OA3, that is overexpressed in ovarian carcinoma and as a protein that copurified with certain integrins and named integrin-associated protein (IAP). IAP and OA3 were shown in 1994 to be identical to CD47. CD47 is a type I integral membrane protein with an extracellular immunoglobulin variable (IgV)-like domain, five membrane-spanning segments, and a short alternatively spliced...

This is a preview of subscription content, log in to check access.

References

  1. Barclay AN, Van den Berg TK. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 2014;32:25–50.  https://doi.org/10.1146/annurev-immunol-032713-120142.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bras M, Yuste VJ, Roue G, Barbier S, Sancho P, Virely C, et al. Drp1 mediates caspase-independent type III cell death in normal and leukemic cells. Mol Cell Biol. 2007;27:7073–88.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Chao MP, Weissman IL, Majeti R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24:225–32.  https://doi.org/10.1016/j.coi.2012.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Csányi G, Yao M, Rodríguez AI, Al Ghouleh I, Sharifi-Sanjani M, Frazziano G, Huang X, Kelley EE, Isenberg JS, Pagano PJ. Thrombospondin-1 regulates blood flow via CD47 receptor-mediated activation of NADPH oxidase 1. Arterioscler Thromb Vasc Biol. 2012 Dec;32(12):2966–73.  https://doi.org/10.1161/ATVBAHA.112.300031.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Kaur S, Roberts DD. Divergent modulation of normal and neoplastic stem cells by thrombospondin-1 and CD47 signaling. Int J Biochem Cell Biol. 2016.  https://doi.org/10.1016/j.biocel.2016.05.005, pii: S1357–2725(16)30111-X.
  6. Lamy L, Foussat A, Brown EJ, Bornstein P, Ticchioni M, Bernard A. Interactions between CD47 and thrombospondin reduce inflammation. J Immunol. 2007;178:5930–9.PubMedCrossRefGoogle Scholar
  7. Maxhimer JB, Soto-Pantoja DR, Ridnour LA, Shih HB, DeGraff WG, Tsokos M, et al. Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med. 2009;1:3ra7.  https://doi.org/10.1126/scitranslmed.3000139CrossRefPubMedPubMedCentralGoogle Scholar
  8. Miller TW, Isenberg JS, Roberts DD. Thrombospondin-1 is an inhibitor of pharmacological activation of soluble guanylate cyclase. Br J Pharmacol. 2010;159:1542–7.  https://doi.org/10.1111/j.1476-5381.2009.00631.x.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Miller TW, Soto-Pantoja DR, Schwartz AL, Sipes JM, DeGraff WG, Ridnour LA, Wink DA, Roberts DD. CD47 receptor globally regulates metabolic pathways that control resistance to ionizing radiation. J Biol Chem. 2015;290:24858–74.  https://doi.org/10.1074/jbc.M115.665752.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Rogers NM, Yao M, Novelli EM, Thomson AW, Roberts DD, Isenberg JS. Activated CD47 regulates multiple vascular and stress responses: implications for acute kidney injury and its management. Am J Physiol Ren Physiol. 2012;303:F1117–25.  https://doi.org/10.1152/ajprenal.00359.2012.CrossRefGoogle Scholar
  11. Rogers NM, Zhang ZJ, Wang JJ, Thomson AW, Isenberg JS. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion. Kidney Int. 2016;90:334–47.  https://doi.org/10.1016/j.kint.2016.03.034.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Roue G, Bitton N, Yuste VJ, Montange T, Rubio M, Dessauge F, et al. Mitochondrial dysfunction in CD47-mediated caspase-independent cell death: ROS production in the absence of cytochrome c and AIF release. Biochimie. 2003;85:741–6.PubMedCrossRefGoogle Scholar
  13. Sarfati M, Fortin G, Raymond M, Susin S. CD47 in the immune response: role of thrombospondin and SIRP-alpha reverse signaling. Curr Drug Targets. 2008;9:842–50.PubMedCrossRefGoogle Scholar
  14. Soto-Pantoja DR, Kaur S, Miller TW, Isenberg JS, Roberts DD. Leukocyte surface antigen CD47. USCD Molecule Pages. 2013;2:1.  https://doi.org/10.6072/H0.MP.A005186.01. http://www.signaling-gateway.org/molecule/query?afcsid=A005186. Accessed 29 July 2015.
  15. Soto-Pantoja DR, Terabe M, Ghosh A, Ridnour LA, DeGraff WG, Wink DA, Berzofsky JA, Roberts DD. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res. 2014;74:6771–83.  https://doi.org/10.1158/0008-5472.CAN-14-0037-TCrossRefPubMedPubMedCentralGoogle Scholar
  16. Soto-Pantoja DR, Kaur S, Roberts DD. CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol. 2015;50:212–30.  https://doi.org/10.3109/10409238.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Stein EV, Miller TW, Ivins-O’Keefe K, Kaur S, Roberts DD. Secreted thrombospondin-1 regulates macrophage interleukin-1β production and activation through CD47. Sci Report. 2016;27:19684.  https://doi.org/10.1038/srep19684.CrossRefGoogle Scholar
  18. Yao M, Roberts DD, Isenberg JS. Thrombospondin-1 inhibition of vascular smooth muscle cell responses occurs via modulation of both cAMP and cGMP. Pharmacol Res. 2010.  https://doi.org/10.1016/j.phrs.2010.10.014.
  19. Yao M, Rogers NM, Csányi G, Rodriguez AI, Ross MA, St Croix C, Knupp H, Novelli EM, Thomson AW, Pagano PJ, Isenberg JS. Thrombospondin-1 activation of signal-regulatory protein-α stimulates reactive oxygen species production and promotes renal ischemia reperfusion injury. J Am Soc Nephrol. 2014;25:1171–86.  https://doi.org/10.1681/ASN.2013040433.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Zhang KY, Yang S, Warraich ST, Blair IP. Ubiquilin 2: a component of the ubiquitin-proteasome system with an emerging role in neurodegeneration. Int J Biochem Cell Biol. 2014;50:123–6.  https://doi.org/10.1016/j.biocel.2014.02.018.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • David D. Roberts
    • 1
  • Jeffrey S. Isenberg
    • 2
  • David R. Soto-Pantoja
    • 3
  1. 1.Laboratory of Pathology, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaUSA
  2. 2.Vascular Medicine Institute and Division of Pulmonary, Allergy and Critical Care MedicineUniversity of Pittsburgh School of Medicine and the Vascular Medicine Institute of the University of PittsburghPittsburghUSA
  3. 3.Departments of Surgery Radiation Oncology and Cancer Biology Comprehensive Cancer CenterWake Forest School of MedicineWinston-SalemUSA