Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Anil Chalisey
  • Thomas Hiron
  • Angharad E. Fenton-May
  • Christopher A. O’Callaghan
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_570


Historical Background

CLEC-2 is a 32 kDa C-type lectin-like immune receptor (Colonna et al. 2000; O’Callaghan 2009). CLEC-2 (gene name CLEC1B) is part of the NK (natural killer) gene cluster found on human chromosome 12 and mouse chromosome 6. Within this cluster, CLEC-2 is part of the Dectin-1 subfamily which consists of all type 2 transmembrane proteins with extracellular C-type lectin-like domains (CTLDs) and immune or homeostatic roles. Other members of this cluster include:  CLEC-1,  Dectin-1, CLEC8A (Lox-1), CLEC9A, CLEC12A, and CLEC12B.

CLEC-2 is a type 2 transmembrane signaling protein with its N-terminal region within the cell and its C-terminal region outside the cell. CLEC-2 has a short cytoplasmic region containing a single YxxL motif followed by a single pass transmembrane domain and then an extracellular...
This is a preview of subscription content, log in to check access.


  1. Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 2003;299(5604):247–51.PubMedPubMedCentralGoogle Scholar
  2. Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity. 2012;37(2):276–89.PubMedPubMedCentralGoogle Scholar
  3. Acton SE, Farrugia AJ, Astarita JL, Mourão-Sá D, Jenkins RP, Nye E, et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature. 2014;514(7523):498–502.PubMedPubMedCentralGoogle Scholar
  4. Bénézech C, Nayar S, Finney BA, Withers DR, Lowe K, Desanti GE. CLEC-2 is required for development and maintenance of lymph nodes. Blood. 2014;123(20):3200–7.PubMedPubMedCentralGoogle Scholar
  5. Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood. 2010;116(4):661–70.PubMedPubMedCentralGoogle Scholar
  6. Chaipan C, Soilleux EJ, Simpson P, Hofmann H, Gramberg T, Marzi A, et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol. 2006;80(18):8951–60.PubMedPubMedCentralGoogle Scholar
  7. Chaipan C, Steffen I, Tsegaye TS, Bertram S, Glowacka I, Kato Y, et al. Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2. Retrovirology. 2010;7:47.PubMedPubMedCentralGoogle Scholar
  8. Christou CM, Pearce AC, Watson AA, Mistry AR, Pollitt AY, Fenton-May AE, et al. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J. 2008;411(1):133–40.PubMedPubMedCentralGoogle Scholar
  9. Colonna M, Samaridis J, Angman L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol. 2000;30(2):697–704.PubMedGoogle Scholar
  10. Cueni LN, Chen L, Zhang H, Marino D, Huggenberger R, Alitalo A, et al. Podoplanin-Fc reduces lymphatic vessel formation in vitro and in vivo and causes disseminated intravascular coagulation when transgenically expressed in the skin. Blood. 2010;116(20):4376–84.PubMedPubMedCentralGoogle Scholar
  11. Finney BA, Schweighoffer E, Navarro-Núñez L, Bénézech C, Barone F, Hughes CE, et al. CLEC-2 and Syk in the megakaryocytic/platelet lineage are essential for development. Blood. 2012;119(7):1747–56.PubMedPubMedCentralGoogle Scholar
  12. Fuller GL, Williams JA, Tomlinson MG, Eble JA, Hanna SL, Pohlmann S, et al. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J Biol Chem. 2007;282(17):12397–409.PubMedPubMedCentralGoogle Scholar
  13. Hatakeyama K, Kaneko MK, Kato Y, Ishikawa T, Nishihira K, Tsujimoto Y, et al. Podoplanin expression in advanced atherosclerotic lesions of human aortas. Thromb Res. 2012;129(4):e70–6.PubMedGoogle Scholar
  14. Hooley E, Papagrigoriou E, Navdaev A, Pandey AV, Clemetson JM, Clemetson KJ, et al. The crystal structure of the platelet activator aggretin reveals a novel (alphabeta)2 dimeric structure. Biochemistry. 2008;47(30):7831–7.PubMedGoogle Scholar
  15. Hughes CE, Navarro-Nunez L, Finney BA, Mourao-Sa D, Pollitt AY, Watson SP. CLEC-2 is not required for platelet aggregation at arteriolar shear. J Thromb Haemost. 2010a;8(10):2328–32.PubMedPubMedCentralGoogle Scholar
  16. Hughes CE, Pollitt AY, Mori J, Eble JA, Tomlinson MG, Hartwig JH, et al. CLEC-2 activates Syk through dimerization. Blood. 2010b;115(14):2947–55.PubMedPubMedCentralGoogle Scholar
  17. Hughes CE, Sinha U, Pandey A, Eble JA, O'Callaghan CA, Watson SP. Critical Role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J Biol Chem. 2013;288(7):5127–35.PubMedGoogle Scholar
  18. Ichise H, Ichise T, Ohtani O, Yoshida N. Phospholipase Cgamma2 is necessary for separation of blood and lymphatic vasculature in mice. Development. 2009;136(2):191–5.PubMedGoogle Scholar
  19. Kerrigan AM, Navarro-Nuñez L, Pyz E, Finney BA, Willment JA, Watson SP, Brown GD. Podoplanin-expressing inflammatory macrophages activate murine platelets via CLEC-2. J Thromb Haemost. 2012;10(3):484–6.PubMedPubMedCentralGoogle Scholar
  20. May F, Hagedorn I, Pleines I, Bender M, Vogtle T, Eble J, et al. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood. 2009;114(16):3464–72.PubMedGoogle Scholar
  21. Nagae M, Morita-Matsumoto K, Kato M, Kaneko MK, Kato Y, Yamaguchi Y. A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure. 2014;22(12):1711–21.PubMedGoogle Scholar
  22. O’Callaghan CA. Thrombomodulation via CLEC-2 targeting. Curr Opin Pharmacol. 2009;9(2):90–5.PubMedGoogle Scholar
  23. Pollitt AY, Grygielska B, Leblond B, Desire L, Eble JA, Watson SP. Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization, secondary mediators, and Rac. Blood. 2010;115(14):2938–46.PubMedGoogle Scholar
  24. Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003;22(14):3546–56.PubMedPubMedCentralGoogle Scholar
  25. Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pohlmann S, Inoue O, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood. 2006;107(2):542–9.PubMedGoogle Scholar
  26. Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007;282(36):25993–6001.PubMedGoogle Scholar
  27. Suzuki-Inoue K, Inoue O, Ding G, Nishimura S, Hokamura K, Eto K, et al. Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J Biol Chem. 2010;285(32):24494–507.PubMedPubMedCentralGoogle Scholar
  28. Tang T, Li L, Tang J, Li Y, Lin WY, Martin F, et al. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol. 2010;28(7):749–55.PubMedGoogle Scholar
  29. Watanabe M, Sugimoto Y, Tsuruo T. Expression of a Mr 41,000 glycoprotein associated with thrombin-independent platelet aggregation in high metastatic variants of murine B16 melanoma. Cancer Res. 1990;50(20):6657–62.PubMedPubMedCentralGoogle Scholar
  30. Watson AA, O’Callaghan CA. Crystallization and X-ray diffraction analysis of human CLEC-2. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005;61(Pt 12):1094–6.PubMedPubMedCentralGoogle Scholar
  31. Watson AA, Brown J, Harlos K, Eble JA, Walter TS, O’Callaghan CA. The crystal structure and mutational binding analysis of the extracellular domain of the platelet-activating receptor CLEC-2. J Biol Chem. 2007;282(5):3165–72.PubMedGoogle Scholar
  32. Watson AA, Christou CM, James JR, Fenton-May AE, Moncayo GE, Mistry AR, et al. The platelet receptor CLEC-2 is active as a dimer. Biochemistry. 2009;48(46):10988–96.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Anil Chalisey
    • 1
  • Thomas Hiron
    • 1
  • Angharad E. Fenton-May
    • 1
  • Christopher A. O’Callaghan
    • 1
  1. 1.Centre for Cellular and Molecular Physiology, Nuffield Department of Clinical MedicineUniversity of OxfordHeadingtonUK