Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

CD53

  • Pedro A. Lazo
  • Mónica Yunta
  • Ramiro Barcia
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_566

Synonyms

Historical Background

CD53 is a member of the tetraspanin family of hydrophobic membrane-spanning proteins. Tetraspanins form microdomains on the cell surface that can interact with many different proteins implicated in signaling forming vesicles leading to endosome and exosome formation. CD53 has no known extracellular ligand. The specific function of CD53 has not yet been defined, but CD53 has been shown to modulate cell adhesion, migration, cell proliferation, and survival. Ligation of CD53 with antibodies protects cells from apoptosis; this effect is mediated by phosphorylation and activation of Akt, increased levels of Bcl-Xl, decreasing the amount of Bax, and reducing caspase activation. In mesangial cells, CD53 ligation stimulates the induction of DNA synthesis via the MEK-ERK pathway. CD53...

This is a preview of subscription content, log in to check access.

References

  1. Andreu Z, Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014;5:442.  https://doi.org/10.3389/fimmu.2014.00442.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Angelisova P, Vlcek C, Stefanova I, Lipoldova M, Horejsi V. The human leucocyte surface antigen CD53 is a protein structurally similar to the CD37 and MRC OX-44 antigens. Immunogenetics. 1990;32:281–5.PubMedCrossRefGoogle Scholar
  3. Angelisova P, Hilgert I, Horejsi V. Association of four antigens of the tetraspans family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogenetics. 1994;39:249–56.PubMedCrossRefGoogle Scholar
  4. Barrena S, Almeida J, Yunta M, Lopez A, Diaz-Mediavilla J, Orfao A, et al. Discrimination of biclonal B-cell chronic lymphoproliferative neoplasias by tetraspanin antigen expression. Leukemia. 2005a;19:1708–9.  https://doi.org/10.1038/sj.leu.2403858.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barrena S, Almeida J, Yunta M, Lopez A, Fernandez-Mosteirin N, Giralt M, et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia. 2005b;19:1376–83.  https://doi.org/10.1038/sj.leu.2403822.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beinert T, Munzing S, Possinger K, Krombach F. Increased expression of the tetraspanins CD53 and CD63 on apoptotic human neutrophils. J Leukoc Biol. 2000;67:369–73.PubMedCrossRefGoogle Scholar
  7. Bosca L, Lazo PA. Induction of nitric oxide release by MRC OX-44 (anti-CD53) through a protein kinase C-dependent pathway in rat macrophages. J Exp Med. 1994;179:1119–26.PubMedCrossRefGoogle Scholar
  8. Boucheix C, Rubinstein E. Tetraspanins. Cell Mol Life Sci. 2001;58:1189–205.PubMedCrossRefGoogle Scholar
  9. Brackman D, Lund-Johansen F, Aarskog D. Expression of leukocyte differentiation antigens during the differentiation of HL-60 cells induced by 1,25-dihydroxyvitamin D3: comparison with the maturation of normal monocytic and granulocytic bone marrow cells. J Leukoc Biol. 1995;58:547–55.PubMedCrossRefGoogle Scholar
  10. Cao L, Yoshino T, Kawasaki N, Sakuma I, Takahashi K, Akagi T. Anti-CD53 monoclonal antibody induced LFA-1/ICAM-1-dependent and -independent lymphocyte homotypic cell aggregation. Immunobiology. 1997;197:70–81.PubMedCrossRefGoogle Scholar
  11. Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E. Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett. 2002;516:139–44.PubMedCrossRefGoogle Scholar
  12. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17:816–26.  https://doi.org/10.1038/ncb3169.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Damjanovich S, Matko J, Matyus L, Szabo Jr G, Szollosi J, Pieri JC, et al. Supramolecular receptor structures in the plasma membrane of lymphocytes revealed by flow cytometric energy transfer, scanning force- and transmission electron-microscopic analyses. Cytometry. 1998;33:225–33.PubMedCrossRefGoogle Scholar
  14. Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol. 2007;177:329–41.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ferrer M, Yunta M, Lazo PA. Pattern of expression of tetraspanin antigen genes in Burkitt lymphoma cell lines. Clin Exp Immunol. 1998;113:346–52.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol. 2003;19:397–422.PubMedCrossRefGoogle Scholar
  17. Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 2005;6:801–11.PubMedCrossRefGoogle Scholar
  18. Hemler ME. Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer. 2014;14:49–60.PubMedCrossRefGoogle Scholar
  19. Hernandez-Torres J, Yunta M, Lazo PA. Differential cooperation between regulatory sequences required for human CD53 gene expression. J Biol Chem. 2001;276:35405–13.  https://doi.org/10.1074/jbc.M104723200.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Horejsi V, Vlcek C. Novel structurally distinct family of leucocyte surface glycoproteins including CD9, CD37, CD53 and CD63. FEBS Lett. 1991;288:1–4.PubMedCrossRefGoogle Scholar
  21. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.  https://doi.org/10.1038/nature15756.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hou CY, Lin JH, Lin SJ, Kuo WC, Lin HT. Down-regulation of CD53 expression in Epinephelus coioides under LPS, poly (I:C), and cytokine stimulation. Fish Shellfish Immunol. 2016;51:143–52.  https://doi.org/10.1016/j.fsi.2015.11.032.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kyriakou D, Alexandrakis MG, Kyriakou ES, Liapi D, Kourelis TV, Mavromanolakis M, et al. Reduced CD43 expression on the neutrophils of MDS patients correlates with an activated phenotype of these cells. Int J Hematol. 2001;73:483–91.PubMedCrossRefGoogle Scholar
  24. Lazo PA. Functional implications of tetraspanin proteins in cancer biology. Cancer Sci. 2007;98:1666–77.  https://doi.org/10.1111/j.1349-7006.2007.00584.x.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lazo PA, Cuevas L, Gutierrez del Arroyo A, Orue E. Ligation of CD53/OX44, a tetraspan antigen, induces homotypic adhesion mediated by specific cell-cell interactions. Cell Immunol. 1997;178:132–40.  https://doi.org/10.1006/cimm.1997.1139.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lee H, Bae S, Jang J, Choi BW, Park CS, Park JS, et al. CD53, a suppressor of inflammatory cytokine production, is associated with population asthma risk via the functional promoter polymorphism -1560 C>T. Biochim Biophys Acta. 2013;1830:3011–8.  https://doi.org/10.1016/j.bbagen.2012.12.030.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Maecker HT, Todd SC, Levy S. The tetraspanin superfamily: molecular facilitators. FASEB J. 1997;11:428–42.PubMedCrossRefGoogle Scholar
  28. Mannion BA, Berditchevski F, Kraeft SK, Chen LB, Hemler ME. Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J Immunol. 1996;157:2039–47.PubMedPubMedCentralGoogle Scholar
  29. Mansson R, Lagergren A, Hansson F, Smith E, Sigvardsson M. The CD53 and CEACAM-1 genes are genetic targets for early B cell factor. Eur J Immunol. 2007;37:1365–76.PubMedCrossRefGoogle Scholar
  30. Mollinedo F, Fontan G, Barasoain I, Lazo PA. Recurrent infectious diseases in human CD53 deficiency. Clin Diagn Lab Immunol. 1997;4:229–31.PubMedPubMedCentralGoogle Scholar
  31. Mollinedo F, Martin-Martin B, Gajate C, Lazo PA. Physiological activation of human neutrophils down-regulates CD53 cell surface antigen. J Leukoc Biol. 1998;63:699–706.PubMedCrossRefGoogle Scholar
  32. Nichols TC, Guthridge JM, Karp DR, Molina H, Fletcher DR, Holers VM. Gamma-glutamyl transpeptidase, an ecto-enzyme regulator of intracellular redox potential, is a component of TM4 signal transduction complexes. Eur J Immunol. 1998;28:4123–9.PubMedCrossRefGoogle Scholar
  33. Olweus J, Lund-Johansen F, Horejsi V. CD53, a protein with four membrane-spanning domains, mediates signal transduction in human monocytes and B cells. J Immunol. 1993;151:707–16.PubMedPubMedCentralGoogle Scholar
  34. Pedersen-Lane JH, Zurier RB, Lawrence DA. Analysis of the thiol status of peripheral blood leukocytes in rheumatoid arthritis patients. J Leukoc Biol. 2007;81:934–41.  https://doi.org/10.1189/jlb.0806533.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H. Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem. 2001;276:40055–64.PubMedCrossRefGoogle Scholar
  36. Stonehouse TJ, Woodhead VE, Herridge PS, Ashrafian H, George M, Chain BM, et al. Molecular characterization of U937-dependent T-cell co-stimulation. Immunology. 1999;96:35–47.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Szollosi J, Horejsi V, Bene L, Angelisova P, Damjanovich S. Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J Immunol. 1996;157:2939–46.PubMedPubMedCentralGoogle Scholar
  38. Tippett E, Cameron PU, Marsh M, Crowe SM. Characterization of tetraspanins CD9, CD53, CD63, and CD81 in monocytes and macrophages in HIV-1 infection. J Leukoc Biol. 2013;93:913–20.  https://doi.org/10.1189/jlb.0812391.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Voehringer DW, Hirschberg DL, Xiao J, Lu Q, Roederer M, Lock CB, et al. Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc Natl Acad Sci USA. 2000;97:2680–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol. 2009;19:434–46.  https://doi.org/10.1016/j.tcb.2009.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yunta M, Lazo PA. Apoptosis protection and survival signal by the CD53 tetraspanin antigen. Oncogene. 2003a;22:1219–24.  https://doi.org/10.1038/sj.onc.1206183.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yunta M, Lazo PA. Tetraspanin proteins as organisers of membrane microdomains and signalling complexes. Cell Signal. 2003b;15:559–64.PubMedCrossRefGoogle Scholar
  43. Yunta M, Rodriguez-Barbero A, Arevalo MA, Lopez-Novoa JM, Lazo PA. Induction of DNA synthesis by ligation of the CD53 tetraspanin antigen in primary cultures of mesangial cells. Kidney Int. 2003;63:534–42.  https://doi.org/10.1046/j.1523-1755.2003.00758.x.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhang XA, Bontrager AL, Hemler ME. Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem. 2001;276:25005–13.PubMedCrossRefGoogle Scholar
  45. Zoller M. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 2009;9:40–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Instituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)-Universidad de SalamancaSalamancaSpain
  2. 2.Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
  3. 3.Unidad de Patología Mamaria, Unidad Funcional de Investigación en Enfermedades CrónicasInstituto de Salud Carlos IIIMajadahonda, MadridSpain
  4. 4.Departamento de Bioquímica y Biología Molecular, Facultad de VeterinariaUniversidad de Santiago de CompostelaLugoSpain