Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

DARPP-32 (Ppp1r1b)

  • Daniela V. Rosa
  • Luiz Alexandre V. Magno
  • Bruno R. Souza
  • Marco A. Romano-SilvaEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_557


Historical Background

Protein phosphorylation is one of the most important posttranslational events that regulate myriad of biological processes such as cell division, cell differentiation, metabolism and modulation of signal transduction pathways (Ubersax and Ferrell 2007).

Studies using behavioral analysis of animal models suggest that alterations in critical intracellular signaling pathways have an important role in the pathophysiology and treatment of complex neuropsychiatric disorders. The hypothesis is that if the vast majority of psychiatric medications exert their primary therapeutic actions in the first week of treatment, the therapeutic effects involve...

This is a preview of subscription content, log in to check access.


  1. Abdolahi A, Acosta G, Breslin FJ, Hemby SE, Lynch WJ. Incubation of nicotine seeking is associated with enhanced protein kinase A-regulated signaling of dopamine- and cAMP-regulated phosphoprotein of 32 kDa in the insular cortex. Eur J Neurosci. 2010;31(4):733–41.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abrahao KP, Oliveira GF, Souza-Formigoni MLO. Individual differences in ethanol locomotor sensitization are associated with dopamine D1 receptor intra-cellular signaling of DARPP-32 in the nucleus accumbens. PLoS One. 2014;9(2):e98296.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Albert KA, Hemmings HC, Adamo AIB, Potkin SG, Akbarian S, Sandman CA, et al. Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Arch Gen Psychiatry. 2002 Aug;59(8):705–12.CrossRefPubMedGoogle Scholar
  4. Andersson M, Usiello A, Borgkvist A, Pozzi L, Dominguez C, Fienberg AA, et al. Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J Neurosci Off J Soc Neurosci. 2005;25(37):8432–8.CrossRefGoogle Scholar
  5. Baracskay KL, Haroutunian V, Meador-Woodruff JH. Dopamine receptor signaling molecules are altered in elderly schizophrenic cortex. Synapse. 2006;60(4):271–9.CrossRefPubMedGoogle Scholar
  6. Belkhiri A, Dar AA, Zaika A, Kelley M, El-Rifai W. t-Darpp promotes cancer cell survival by up-regulation of Bcl2 through Akt-dependent mechanism. Cancer Res. 2008;68(2):395–403.CrossRefPubMedGoogle Scholar
  7. Belkhiri A, Zhu S, El-Rifai W. DARPP-32: from neurotransmission to cancer. Oncotarget. 2016;7(14):17631–40.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Benderska N, Becker K, Girault JA, Becker CM, Andreadis A, Stamm S. DARPP-32 binds to tra2-beta1 and influences alternative splicing. Biochim Biophys Acta Gene Regul Mech. 2010;1799(5–6):448–53.CrossRefGoogle Scholar
  9. Beuten J, Ma JZ, Lou XY, Payne TJ, Li MD. Association analysis of the protein phosphatase 1 regulatory subunit 1B (PPP1R1B) gene with nicotine dependence in European- and African-American smokers. Am J Med Genet B Neuropsychiatr Genet. 2007;144(3):285–90.CrossRefGoogle Scholar
  10. Björk K, Terasmaa A, Sun H, Thorsell A, Sommer WH, Heilig M. Ethanol-induced activation of AKT and DARPP-32 in the mouse striatum mediated by opioid receptors. Addict Biol. 2010;15(3):299–303.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bodetto SP, Carouge D, Fonteneau M, Dietrich JB, Zwiller J, Anglard P. Cocaine represses protein phosphatase-1Cβ through DNA methylation and methyl-CpG binding protein-2 recruitment in adult rat brain. Neuropharmacology. 2013;73:31–40.CrossRefGoogle Scholar
  12. Bonoiu A, Supriya DM, Ling Y, Rajiv K, Hong D, Ken-Tye Y, et al. MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier. Brain Res. 2009;1282:142–155.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Borgkvist A, Marcellino D, Fuxe K, Greengard P, Fisone G. Regulation of DARPP-32 phosphorylation by Δ9-tetrahydrocannabinol. Neuropharmacology. 2008;54(1):31–5.CrossRefPubMedGoogle Scholar
  14. Cardno AG, Holmans PA, Rees MI, Jones LA, Mccarthy GM, Hamshere ML, et al. Rapid publication A genomewide linkage study of age at onset in schizophrenia. Am J Med Genet. 2001;445:439–45.CrossRefGoogle Scholar
  15. Cash R, Raisman R, Ploska A, Agid Y. Dopamine D-1 receptor and cyclic AMP-dependent phosphorylation in Parkinson’s disease. J Neurochem. 1987;49(4):1075–83.CrossRefPubMedGoogle Scholar
  16. Cathala A, Devroye C, Maitre M, Piazza PV, Abrous DN, Revest JM, et al. Serotonin 2C receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine. Addict Biol. 2015;20(3):445–57.CrossRefPubMedGoogle Scholar
  17. Chen J-C, Chen P-C, Chiang Y-C. Molecular mechanisms of psychostimulant addiction. Chang Gung Med J. 2008;32(2):148–54.Google Scholar
  18. Chiapponi C, Piras F, Piras F, Caltagirone C, Spalletta G. GABA system in schizophrenia and mood disorders: a mini review on third-generation imaging studies. Front Psychol. 2016;7:61.Google Scholar
  19. Clinton SM, Ibrahim HM, Frey KA, Davis KL, Haroutunian V, Meador-Woodruff JH. Dopaminergic abnormalities in select thalamic nuclei in schizophrenia: involvement of the intracellular signal integrating proteins calcyon and spinophilin. Am J Psychiatr. 2005;162(10):1859–71.CrossRefPubMedGoogle Scholar
  20. Cui Y, Prabhu V, Nguyen T, Yadav B, Chung Y-C. The mRNA expression status of dopamine receptor D2, dopamine receptor D3 and DARPP-32 in T lymphocytes of patients with early psychosis. Int J Mol Sci. 2015 Nov;16(11):26677–86.PubMedPubMedCentralCrossRefGoogle Scholar
  21. ĆurČić-Blake B, Swart M, Ter Horst GJ, Langers DRM, Kema IP, Aleman A. Variation of the gene coding for DARPP-32 (PPP1R1B) and brain connectivity during associative emotional learning. NeuroImage. 2012;59(2):1540–50.CrossRefPubMedGoogle Scholar
  22. Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL, et al. Genomewide linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative. Am J Hum Genet. 2003;73(1):107–14.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ehrman LA, Williams MT, Schaefer TL, Gudelsky GA, Reed TM, Fienberg AA, et al. Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice. Genes Brain Behav. 2006;5(7):540–51.CrossRefPubMedGoogle Scholar
  24. El-Rifai W, Smith MF, Li G, Beckler A, Carl VS, Montgomery E, et al. Gastric cancers overexpress DARPP-32 and a novel isoform, t-DARPP. Cancer Res. 2002;62(14):4061–4.PubMedGoogle Scholar
  25. Engmann O, Giralt A, Gervasi N, Marion-Poll L, Gasmi L, Filhol O, et al. DARPP-32 interaction with adducin may mediate rapid environmental effects on striatal neurons. Nat Commun. 2015;6:10099.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Feldcamp LA, Souza RP, Romano-Silva M, Kennedy JL, Wong AHC. Reduced prefrontal cortex DARPP-32 mRNA in completed suicide victims with schizophrenia. Schizophr Res. 2008;103(1–3):192–200.CrossRefPubMedGoogle Scholar
  27. Fernández-Ruiz J, Hernández M, Ramos JA. Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther. 2010;16:e72–91.CrossRefPubMedGoogle Scholar
  28. Fienberg AA, Greengard P. The DARPP-32 knockout mouse. Brain Res Rev. 2000;31(2–3):313–9.CrossRefPubMedGoogle Scholar
  29. Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, et al. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science. 1998; 281(5378):838–42.CrossRefPubMedGoogle Scholar
  30. Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE. Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci. 2007;104(41):16311–6.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fukui R, Svenningsson P, Matsuishi T, Higashi H, Nairn AC, Greengard P, et al. Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, mice. J Neurochem. 2003;87(6):1391–401.CrossRefPubMedGoogle Scholar
  32. Girault JA, Raisman-Vozari R, Agid Y, Greengard P. Striatal phosphoproteins in Parkinson disease and progressive supranuclear palsy. Proc Natl Acad Sci U S A. 1989;86(7):2493–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol. 2008;75(1):266–322.CrossRefPubMedGoogle Scholar
  34. Greengard P. The neurobiology of dopamine signaling. Biosci Rep. 2001;21:247–69.CrossRefPubMedGoogle Scholar
  35. Guitart X, Nestler EJ. Chronic administration of lithium or other antidepressants increases levels of DARPP-32 in rat frontal cortex. J Neurochem. 1992;59(3):1164–7.CrossRefPubMedGoogle Scholar
  36. Hämmerer D, Biele G, Müller V, Thiele H, Nürnberg P, Heekeren HR, et al. Effects of PPP1R1B (DARPP-32) polymorphism on feedback-related brain potentials across the life span. Front Psychol. 2013;4:89.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hettinger JA, Liu X, Hudson ML, Lee A, Cohen IL, Michaelis RC, et al. DRD2 and PPP1R1B (DARPP-32) polymorphisms independently confer increased risk for autism spectrum disorders and additively predict affected status in male-only affected sib-pair families. Behav Brain Funct. 2012;8:19.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Heyser CJ, Fienberg AA, Greengard P, Gold LH. DARPP-32 knockout mice exhibit impaired reversal learning in a discriminated operant task. Brain Res. 2000;867(1–2):122–30.CrossRefPubMedGoogle Scholar
  39. Host L, Dietrich JB, Carouge D, Aunis D, and Zwiller J. Cocaine self-administration alters the expression of chromatin-remodelling proteins; modulation by histone deacetylase inhibition. J Psychopharmacol. 2011; 25(2):222–9.CrossRefPubMedGoogle Scholar
  40. Ignatowski TA, Aalinkeel R, Reynolds JL, Nair BB, Sykes DE, Gleason CPK, et al. Nanotherapeutic approach for opiate addiction using DARPP-32 gene silencing in an animal model of opiate addiction. J NeuroImmune Pharmacol. 2015;10(1):136–52.CrossRefPubMedGoogle Scholar
  41. Ishikawa M, Mizukami K, Iwakiri M, Asada T. Immunohistochemical and immunoblot analysis of Dopamine and cyclic AMP-regulated phosphoprotein, relative molecular mass 32,000 (DARPP-32) in the prefrontal cortex of subjects with schizophrenia and bipolar disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31(6):1177–81.CrossRefGoogle Scholar
  42. Kunii Y, Yabe H, Wada A, Yang Q, Nishiura K, Niwa S. Altered DARPP-32 expression in the superior temporal gyrus in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011a;35(4):1139–43.CrossRefGoogle Scholar
  43. Kunii Y, Ikemoto K, Wada A, Yang Q, Kusakabe T, Suzuki T, et al. Detailed DARPP-32 expression profiles in postmortem brains from patients with schizophrenia: an immunohistochemical study. Med Molecul Morphol. 2011b;44(4):190–9.CrossRefGoogle Scholar
  44. Kunii Y, Hyde TM, Ye T, Li C, Kolachana B, Dickinson D, et al. Revisiting DARPP-32 in postmortem human brain: changes in schizophrenia and bipolar disorder and genetic associations with t-DARPP-32 expression. Mol Psychiatry. 2014a;19(2):192–9.CrossRefPubMedGoogle Scholar
  45. Kunii Y, Miura I, Matsumoto J, Hino M, Wada A, Niwa S, et al. Elevated postmortem striatal t-DARPP expression in schizophrenia and associations with DRD2/ANKK1 polymorphism. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014b;53:123–8.CrossRefGoogle Scholar
  46. Kuroiwa M, Hamada M, Hieda E, Shuto T, Sotogaku N, Flajolet M, et al. Muscarinic receptors acting at pre- and post-synaptic sites differentially regulate dopamine/DARPP-32 signaling in striatonigral and striatopallidal neurons. Neuropharmacology. 2012;63(7):1248–57.CrossRefPubMedGoogle Scholar
  47. Lazenka MF, Selley DE, Sim-Selley LJ. ΔFosB induction correlates inversely with CB1 receptor desensitization in a brain region-dependent manner following repeated Δ9-THC administration. Neuropharmacology. 2014;77:224–33.CrossRefPubMedGoogle Scholar
  48. Lazenka MF, Tomarchio AJ, Lichtman AH, Greengard P, Flajolet M, Selley DE, et al. Role of dopamine type 1 receptors and dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa in Δ9-tetrahydrocannabinol-mediated induction of ΔFosB in the mouse forebrain. J Pharmacol Exp Ther. 2015;354(3):316–27.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Li SC, Passow S, Nietfeld W, Schröder J, Bertram L, Heekeren HR, et al. Dopamine modulates attentional control of auditory perception: DARPP-32 (PPP1R1B) genotype effects on behavior and cortical evoked potentials. Neuropsychologia. 2013;51(8):1649–61.CrossRefPubMedGoogle Scholar
  50. Li L, Gervasi N, Girault J-A. Dendritic geometry shapes neuronal cAMP signalling to the nucleus. Nat Commun. 2015;6:6319.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lindskog M, Svenningsson P, Pozzi L, Kim Y, Fienberg AA, Bibb JA, et al. Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature. 2002;418(6899):774–8.CrossRefPubMedGoogle Scholar
  52. Mahajan SD, Aalinkeel R, Reynolds JL, Nair BB, Sykes DE, Hu Z, et al. Therapeutic Targeting of “DARPP-32”. A key signaling molecule in the dopiminergic pathway for the treatment of opiate addiction. Int Rev Neurobiol. 2009;88:199–222.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Meyer-lindenberg A, Straub RE, Lipska BK, Verchinski BA, Goldberg T, Callicott JH, et al. Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. Health (San Francisco). 2007a;117(3):672–82.Google Scholar
  54. Meyer-Lindenberg A, Straub RE, Lipska BK, Verchinski BA, Goldberg T, Callicott JH, et al. Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. J Clin Invest. 2007b;117(3):672–82.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Nairn AC, Svenningsson P, Nishi A, Fisone G, Girault JA, Greengard P. The role of DARPP-32 in the actions of drugs of abuse. Neuropharmacology. 2004;47:14–23.CrossRefPubMedGoogle Scholar
  56. Reis HJ, Rosa DV, Guimarães MM, Souza BR, Barros AG, Pimenta FJ, et al. Is DARPP-32 a potential therapeutic target? Expert Opin Ther Targets. 2007;11(12):1649–61.CrossRefPubMedGoogle Scholar
  57. Risinger FO, Freeman PA, Greengard P, Fienberg AA. Motivational effects of ethanol in DARPP-32 knock-out mice. J Neurosci Off J Soc Neurosci. 2001;21(1):340–8.CrossRefGoogle Scholar
  58. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011;12(11):623–37.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Rosa DVF, Souza RP, Souza BR, Motta BS, Caetano F, Jornada LK, et al. DARPP-32 expression in rat brain after electroconvulsive stimulation. Brain Res. 2007;1179(1):35–41.CrossRefPubMedGoogle Scholar
  60. Rowland LM, Kontson K, West J, Edden RA, Zhu H, Wijtenburg SA, et al. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia. Schizophr Bull. 2013;39(5):1096–104.CrossRefPubMedGoogle Scholar
  61. Schuck NW, Frensch PA, Schjeide BMM, Schröder J, Bertram L, Li SC. Effects of aging and dopamine genotypes on the emergence of explicit memory during sequence learning. Neuropsychologia. 2013;51(13):2757–69.CrossRefPubMedGoogle Scholar
  62. Shin SS, Bray ER, Dixon CE. Effects of nicotine administration on striatal dopamine signaling after traumatic brain injury in rats. J Neurotrauma. 2012;29(5):843–50.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Smith CT, Swift-Scanlan T, Boettiger CA. Genetic polymorphisms regulating dopamine signaling in the frontal cortex interact to affect target detection under high working memory load. J Cogn Neurosci. 2014;26(2):395–407.CrossRefPubMedGoogle Scholar
  64. Souza BR, Souza RP, DVF R, Guimarães MM, Correa H, Romano-Silva MA. Dopaminergic intracellular signal integrating proteins: relevance to schizophrenia. Dialogues Clin Neurosci. 2006;8:95–100.PubMedPubMedCentralGoogle Scholar
  65. Souza RP, Soares EC, Rosa DVF, Souza BR, Gomes KM, Valvassori SS, et al. Cerebral DARPP-32 expression after methylphenidate administration in young and adult rats. Int J Dev Neurosci. 2009;27(1):1–7.CrossRefPubMedGoogle Scholar
  66. Souza BR, Torres KCL, Miranda DM, Motta BS, Scotti-Muzzi E, Guimarães MM, et al. Lack of effects of typical and atypical antipsychotics in DARPP-32 and NCS-1 levels in PC12 cells overexpressing NCS-1. J Negat Results Biomed. 2010;9:4.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Svenningsson P. Diverse psychotomimetics act through a common signaling pathway. Science. 2003;302(5649):1412–5.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Svenningsson P, Fienberg AA, Allen PB, Moine CL, Lindskog M, Fisone G, et al. Dopamine D(1) receptor-induced gene transcription is modulated by DARPP-32. J Neurochem. 2000a;75(1):248–57.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Svenningsson P, Lindskog M, Ledent C, Parmentier M, Greengard P, Fredholm BB, et al. Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. Proc Natl Acad Sci U S A. 2000b;97(4):1856–60.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Svenningsson P, Nishi A, Fisone G, Girault J-A, Nairn AC, Greengard P. DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol. 2004;44:269–96.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Svenningsson P, Nairn AC, Greengard P. DARPP-32 mediates the actions of multiple drugs of abuse. AAPS J. 2005;7(2):E353–60.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Torres KCL, Souza BR, Miranda DM, Nicolato R, Neves FS, Barros AGA, et al. The leukocytes expressing DARPP-32 are reduced in patients with schizophrenia and bipolar disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33(2):214–9.CrossRefGoogle Scholar
  73. Ubersax JA, Ferrell Jr JE. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol. 2007;8(7):530–41.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ung CY, Teoh TC. The evolutionary strata of DARPP-32 tail implicates hierarchical functional expansion in higher vertebrates. J Biosci. 2014;39(3):493–504.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Vangamudi B, Peng D-F, Cai Q, El-Rifai W, Zheng W, Belkhiri A. t-DARPP regulates phosphatidylinositol-3-kinase-dependent cell growth in breast cancer. Mol Cancer. 2010;9:240.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Volkow ND, Baler RD, Compton WM, Weiss SRB. Adverse health effects of marijuana use. N Engl J Med. 2014;370:2219–27.PubMedPubMedCentralCrossRefGoogle Scholar
  77. West AR, Grace AA. Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci. 2002;22(1):294–304.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Yamada K, Takahashi S, Karube F, Fujiyama F, Kobayashi K, Nishi A, et al. Neuronal circuits and physiological roles of the basal ganglia in terms of transmitters, receptors and related disorders. J Physiol Sci. 2016;66:435–46.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Yger M, Girault J-A. DARPP-32, Jack of All Trades… Master of Which? Front Behav Neurosci. 2011;5:56.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Zachariou V, Benoit-Marand M, Allen PB, Ingrassia P, Fienberg AA, Gonon F, et al. Reduction of cocaine place preference in mice lacking the protein phosphatase 1 inhibitors DARPP 32 or Inhibitor 1. Biol Psychiatry. 2002;51(8):612–20.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Zhu S, Belkhiri A, El-Rifai W. DARPP-32 increases interactions between epidermal growth factor receptor and ERBB3 to promote tumor resistance to gefitinib. Gastroenterology. 2011;141(5):1738–48.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Daniela V. Rosa
    • 1
  • Luiz Alexandre V. Magno
    • 1
  • Bruno R. Souza
    • 1
    • 2
  • Marco A. Romano-Silva
    • 1
    Email author
  1. 1.Faculdade de Medicina, Instituto Nacional de Ciência e Tecnologia – Medicina MolecularUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil