Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Net1 (Neuroepithelial Cell Transforming Gene 1 Protein)

  • Jeffrey A. Frost
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_554

Synonyms

 ARHGEF8;  Net1A

Historical Background

Rho family small GTPases control multiple cell functions, including organization of the actin cytoskeletal, cell motility and invasion, and cell cycle progression. They act as molecular switches, cycling between their active GTP-bound and inactive GDP-bound states. When bound to GTP, Rho GTPases initiate intracellular signaling by binding to downstream proteins known as effectors (Jaffe and Hall 2005). The activation state of Rho GTPases is controlled by three families of proteins, known as GDP exchange factors (Rho GEFs), GTPase activating proteins (Rho GAPs), and guanine nucleotide dissociation inhibitors (Rho GDIs). Rho GEFs activate Rho proteins by stimulating the release of GDP, thereby allowing the binding of GTP (Rossman et al. 2005; Meller et al. 2005). Rho GAPs accelerate the intrinsic GTPase activity of Rho proteins to hydrolyze GTP to GDP (Tcherkezian and Lamarche-Vane 2007). Rho GDIs sequester inactive, GDP-bound Rho GTPases...

This is a preview of subscription content, log in to check access.

References

  1. Ahmad HM, Muiwo P, Ramachandran SS, Pandey P, Gupta YK, Kumar L, et al. miR-22 regulates expression of oncogenic neuro-epithelial transforming gene 1, NET1. FEBS J. 2014;281(17):3904–19.CrossRefPubMedGoogle Scholar
  2. Alberts AS, Treisman R. Activation of RhoA and SAPK/JNK signalling pathways by the RhoA-specific exchange factor mNET1. EMBO J. 1998;17:4075–85.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alberts AS, Qin H, Carr HS, Frost JA. PAK1 negatively regulates the activity of the Rho exchange factor NET1. J Biol Chem. 2005;280(13):12152–61.CrossRefPubMedGoogle Scholar
  4. Brazier H, Stephens S, Ory S, Fort P, Morrison N, Blangy A. Expression profile of RhoGTPases and RhoGEFs during RANKL-stimulated osteoclastogenesis: identification of essential genes in osteoclasts. J Bone Miner Res. 2006;21(9):1387–98.CrossRefPubMedGoogle Scholar
  5. Carr HS, Cai C, Keinanen K, Frost JA. Interaction of the RhoA exchange factor Net1 with discs large homolog 1 protects it from proteasome mediated degradation and potentiates Net1 activity. J Biol Chem. 2009;284(36):24269–80.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Carr HS, Morris CA, Menon S, Song EH, Frost JA. Rac1 controls the subcellular localization of the RhoGEF Net1A to regulate focal adhesion formation and cell spreading. Mol Cell Biol. 2012;33(3):622–34.CrossRefPubMedGoogle Scholar
  7. Carr HS, Zuo Y, Oh W, Frost JA. Regulation of FAK activation, breast cancer cell motility and amoeboid invasion by the RhoA GEF Net1. Mol Cell Biol. 2013;33:2773–86.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chan AM, Takai S, Yamada K, Miki T. Isolation of a novel oncogene, NET1, from neuroepithelioma cells by expression cDNA cloning. Oncogene. 1996;12:1259–66.PubMedGoogle Scholar
  9. DerMardirossian C, Bokoch GM. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 2005;15(7):356–63.CrossRefPubMedGoogle Scholar
  10. Dobrosotskaya IY. Identification of mNET1 as a candidate ligand for the first PDZ domain of MAGI-1. Biochem Biophys Res Commun. 2001;283(4):969–75.CrossRefPubMedGoogle Scholar
  11. Dubash AD, Guilluy C, Srougi MC, Boulter E, Burridge K, Garcia-Mata R. The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals. PLoS One. 2011;6(2):e17380.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dutertre M, Gratadou L, Dardenne E, Germann S, Samaan S, Lidereau R, et al. Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer. Cancer Res. 2010;70(9):3760–70.CrossRefPubMedGoogle Scholar
  13. Garcia-Mata R, Dubash AD, Sharek L, Carr HS, Frost JA, Burridge K. The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity. Mol Cell Biol. 2007;27(24):8683–97.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gilcrease MZ, Kilpatrick SK, Woodward WA, Zhou X, Nicolas MM, Corley LJ, et al. Coexpression of alpha6beta4 integrin and guanine nucleotide exchange factor Net1 identifies node-positive breast cancer patients at high risk for distant metastasis. Cancer Epidemiol Biomark Prev. 2009;18(1):80–6.CrossRefGoogle Scholar
  15. Guerra L, Carr HS, Richter-Dahlfors A, Masucci MG, Thelestam M, Frost JA, et al. A bacterial cytotoxin identifies the RhoA exchange factor Net1 as a key effector in the response to DNA damage. PLoS One. 2008;3(5):e2254.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hu JK, McGlinn E, Harfe BD, Kardon G, Tabin CJ. Autonomous and nonautonomous roles of Hedgehog signaling in regulating limb muscle formation. Genes Dev. 2012;26(18):2088–102.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Jaffe AB, Hall A, Schmidt A. Association of CNK1 with Rho guanine nucleotide exchange factors controls signaling specificity downstream of Rho. Curr Biol. 2005;15(5):405–12.CrossRefPubMedGoogle Scholar
  19. Lai DP, Tan S, Kang YN, Wu J, Ooi HS, Chen J, et al. Genome-wide profiling of polyadenylation sites reveals a link between selective polyadenylation and cancer metastasis. Hum Mol Genet. 2015;24(12):3410–7.CrossRefPubMedGoogle Scholar
  20. Lee J, Moon HJ, Lee JM, Joo CK. Smad3 regulates Rho signaling via NET1 in the transforming growth factor-beta-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells. J Biol Chem. 2010;285(34):26618–27.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Leyden J, Murray D, Moss A, Arumuguma M, Doyle E, McEntee G, et al. Net1 and Myeov: computationally identified mediators of gastric cancer. Br J Cancer. 2006;94(8):1204–12.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Meller N, Merlot S, Guda C. CZH proteins: a new family of Rho-GEFs. J Cell Sci. 2005;118(Pt 21):4937–46.CrossRefPubMedGoogle Scholar
  23. Menon S, Oh W, Carr HS, Frost JA. Rho GTPase independent regulation of mitotic progression by the RhoGEF Net1. Mol Biol Cell. 2013;24(17):2655–67.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Miyakoshi A, Ueno N, Kinoshita N. Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development. Differentiation. 2004;72(1):48–55.CrossRefPubMedGoogle Scholar
  25. Murray D, Horgan G, MacMathuna P, Doran P. NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. Br J Cancer. 2008;99(8):1322–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Mzali R, Seguin L, Liot C, Auger A, Pacaud P, Loirand G, et al. Regulation of Rho signaling pathways in interleukin-2-stimulated human T-lymphocytes. FASEB J. 2005;19(13):1911–3.CrossRefPubMedGoogle Scholar
  27. Nakaya Y, Sukowati EW, Wu Y, Sheng G. RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol. 2008;10(7):765–75.CrossRefPubMedGoogle Scholar
  28. Oh W, Frost JA. Rho GTPase independent regulation of ATM activation and cell survival by the RhoGEF Net1A. Cell Cycle. 2014;13(17):2765–72.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Papadimitriou E, Vasilaki E, Vorvis C, Iliopoulos D, Moustakas A, Kardassis D, et al. Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-beta and miR-24: role in epithelial-to-mesenchymal transition. Oncogene. 2011;31(23):2862–75.CrossRefPubMedGoogle Scholar
  30. Qin H, Carr HS, Wu X, Muallem D, Tran NH, Frost JA. Characterization of the biochemical and transforming properties of the neuroepithelial transforming protein 1. J Biol Chem. 2005;280(9):7603–13.CrossRefPubMedGoogle Scholar
  31. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB. Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem. 2002;277(7):5209–18.CrossRefPubMedGoogle Scholar
  32. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6(2):167–80.CrossRefPubMedGoogle Scholar
  33. Schaffer BE, Levin RS, Hertz NT, Maures TJ, Schoof ML, Hollstein PE, et al. Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab. 2015;22(5):907–21.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Schmidt A, Hall A. The Rho exchange factor Net1 is regulated by nuclear sequestration. J Biol Chem. 2002;277:14581–8.CrossRefPubMedGoogle Scholar
  35. Shen X, Li J, Hu PP, Waddell D, Zhang J, Wang XF. The activity of guanine exchange factor NET1 is essential for transforming growth factor-beta-mediated stress fiber formation. J Biol Chem. 2001;276:15362–8.CrossRefPubMedGoogle Scholar
  36. Shen SQ, Li K, Zhu N, Nakao A. Expression and clinical significance of NET-1 and PCNA in hepatocellular carcinoma. Med Oncol. 2008;25(3):341–5.CrossRefPubMedGoogle Scholar
  37. Song EH, Oh W, Ulu A, Carr HS, Zuo Y, Frost JA. Acetylation of the RhoA GEF Net1A controls its subcellular localization and activity. J Cell Sci. 2015;128(5):913–22.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Srougi MC, Burridge K. The nuclear guanine nucleotide exchange factors Ect2 and Net1 regulate RhoB-mediated cell death after DNA damage. PLoS One. 2011;6(2):e17108.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Tcherkezian J, Lamarche-Vane N. Current knowledge of the large RhoGAP family of proteins. Biol Cell. 2007;99(2):67–86.CrossRefPubMedGoogle Scholar
  40. Tran QC, Gautreau A, Arpin M, Treisman R. Ezrin function is required for ROCK-mediated fibroblast transformation by the Net and Dbl oncogenes. EMBO J. 2000;19(17):4565–76.CrossRefGoogle Scholar
  41. Tu Y, Lu J, Fu J, Cao Y, Fu G, Kang R, et al. Over-expression of neuroepithelial-transforming protein 1 confers poor prognosis of patients with gliomas. Jpn J Clin Oncol. 2010;40(5):388–94.CrossRefPubMedGoogle Scholar
  42. Vessichelli M, Ferravante A, Zotti T, Reale C, Scudiero I, Picariello G, et al. Neuroepithelial transforming gene 1 (Net1) binds to caspase activation and recruitment domain (CARD)- and membrane-associated guanylate kinase-like domain-containing (CARMA) proteins and regulates nuclear factor kappaB activation. J Biol Chem. 2012;287(17):13722–30.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Zuo Y, Berdeaux R, Frost JA. The RhoGEF Net1 is required for normal mammary gland development. Mol Endocrinol. 2014;28(12):1948–60.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Integrative Biology and PharmacologyUniversity of Texas Health Science Center at HoustonHoustonUSA