Skip to main content

Phosphodiesterase 1

  • Reference work entry
  • First Online:
  • 58 Accesses

Synonyms

Calmodulin-dependent cyclic nucleotide phosphodiesterase; PDE 1

Historical Background

Cyclic nucleotide phosphodiesterase (PDE) was demonstrated after the discovery of cAMP (Sutherland and Rall 1958). In most tissues, PDE exists in multiple forms which differ in subcellular localization, relative substrate specificity toward cAMP and cGMP, regulatory and immunological properties (Beavo 1995; Kakkar et al. 1999; Goraya and Cooper 2005). Most tissues examined have been shown to contain Ca2+ and calmodulin (CaM)-dependent cyclic nucleotide phosphodiesterase 1 (PDE1) and this enzyme has been intensively studied (Beavo 1995; Kakkar et al. 1999). Earlier, it was suggested that PDE1 consists of a single species (Wells and Hardman 1977), but later found to exist as a tissue-specific and immunological distinct enzyme (Sharma et al. 1984). With the rapidly expanding list of PDE1 isozymes, a new nomenclature was developed based on the primary structure of different PDEs (Beavo et al. 1994...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ang KL, Antoni FA. Reciprocal regulation of calcium dependent and calcium independent cyclic AMP hydrolysis by protein phosphorylation. J Neurochem. 2002;81:422–33.

    Article  CAS  PubMed  Google Scholar 

  • Beavo JA. Phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995;75:725–43.

    Article  CAS  PubMed  Google Scholar 

  • Beavo JA, Conti M, Healip RJ. Multiple cyclic nucleotide phosphodiesterases. Mol Pharmacol. 1994;75:399–405.

    Google Scholar 

  • Fesenko EE, Kolesnikov SS, Lyubarsky AL. Induction of cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature. 1985;313:310–3.

    Article  PubMed  CAS  Google Scholar 

  • Florio VA, Sonnenburg WK, Johnson R, Kwak KS, Jensen GS, Walsh KA, Beavo JA. Phosphorylation of the 61 kDa calmodulin-stimulated cyclic nucleotide phosphodiesterase at serine 120 reduces its affinity for calmodulin. Biochemistry. 1994;33:8948–54.

    Article  CAS  PubMed  Google Scholar 

  • Goraya TA, Cooper DM. Ca2+−calmodulin-dependent phosphodiesterase (PDE1): current perspectives. Cell Signal. 2005;17:789–97.

    Article  CAS  PubMed  Google Scholar 

  • Hansen RS, Beavo JA. Differential recognition of calmodulin-enzyme complexes by a conformation-specific anti-calmodulin monoclonal antibody. J Biol Chem. 1986;261:14636–45.

    PubMed  CAS  Google Scholar 

  • Huang CY, Chau V, Chock PB, Wang JH, Sharma RK. Mechanism of activation of cyclic nucleotide phosphodiesterase: requirement foer the binding of four Ca2+ to calmodulin for activation. Proc Natl Acad Sci U S A. 1981;78:871–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kakkar R, Raju RVS, Sharma RK. Calmodulin-dependent cyclic nucleotide phosphodiesterase. Cell Mol Life Sci. 1999;55:1164–85.

    Article  CAS  PubMed  Google Scholar 

  • Keravis TM, Duemler BH, Wells JN. Calmodulin-sensitive phosphodiesterase of porcine cerebral cortex: kinetic behavior, calmodulin activation and stability. J Cyclic Nucleotide Protein Phosphor Res. 1986;11:365–72.

    PubMed  CAS  Google Scholar 

  • Klee CB. Interaction of calmodulin with Ca2+ and target proteins. In: Cohen P, Klee CB, editors. Molecular aspects of cell regulation. 5 New York: Elsevier Science; 1988. p. 35–56.

    Google Scholar 

  • Klee CB, Vanaman TC. Calmodulin. Adv Protein Chem. 1982;35:213–321.

    Article  CAS  PubMed  Google Scholar 

  • Kowasski H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybrel AM. A family of cAMP-binding proteins that directly activate Rep1. Science. 1998;282:2275–9.

    Article  Google Scholar 

  • Sharma RK. Phosphorylation and characterization of bovine heart calmodulin-dependent phosphodiesterase. Biochemistry. 1991;30:5963–8.

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Kalra J. Characterization of calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes. Biochem J. 1994;299:97–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma RK, Wang JH. Differential regulation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase. Proc Natl Acad Sci U S A. 1985;82:2603–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma RK, Wang JH. Purification and characterization of bovine lung calmodulin-dependent cyclic nucleotide phosphodiesterase. An enzyme containing calmodulin as a subunit. J Biol Chem. 1986a;261:14160–6.

    PubMed  CAS  Google Scholar 

  • Sharma RK, Wang JH. Calmodulin and Ca2+-dependent phosphorylation and dephosphorylation of 63 kDa subunit-containing bovine brain calmodulin-stimulated cyclic nucleotide phosphodiesterase isozyme. J Biol Chem. 1986b;261:1322–8.

    PubMed  CAS  Google Scholar 

  • Sharma RK, Adachi AM, Adachi K, Wang JH. Demonstration of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes by monoclonal antibodies. J Biol Chem. 1984;259:9248–54.

    PubMed  CAS  Google Scholar 

  • Sharma RK, Wang JH, Mechanisms WZ. of inhibition of calmodulin-stimulated cyclic nucleotide phosphodiesterase by dihydropyridine calcium antagonists. J Neurochem. 1997;69:845–50.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland EW, Rall TW. Factionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem. 1958;232:1077–91.

    PubMed  CAS  Google Scholar 

  • Vandeput F, Wolda SL, Krall J, Hambleton R, Uher L, McCaw KN, Radwanski PB, Florio V, Movsesian MA. Cyclic nucleotide phosphodiesterase PDE1C1 in human cardia myocytes. J Biol Chem. 2007;82:32749–57.

    Article  CAS  Google Scholar 

  • Wells JN, Hardman JG. Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res. 1977;8:119–43.

    PubMed  CAS  Google Scholar 

  • Zhang GY, Wang JH, Sharma RK. Purification and characterization of bovine brain calmodulin-dependent protein kinase II. The significance of autophosphorylation in the regulation of 63 kDa calmodulin-dependent cyclic nucleotide phosphodiesterase isozyme. Mol Cell Biochem. 1993a;122:159–69.

    Article  CAS  PubMed  Google Scholar 

  • Zhang GY, Wang JH, Sharma RK. Bovine brain calmodulin-dependent protein kinase II: molecular mechanisms of autophosphorylation. Biochem Biophys Res Commun. 1993b;191:669–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujeet Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, S., Selvakumar, P., Sharma, R.K. (2018). Phosphodiesterase 1. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_537

Download citation

Publish with us

Policies and ethics