Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Hiroyuki Nakanishi
  • Yoshimi TakaiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_517



Historical Background

Dynamic reorganization of the actin cytoskeleton is essential for many cellular activities, such as cell shape changes, cell migration, cell adhesion, and cytokinesis. The Rho family small GTP-binding proteins (G proteins), including Cdc42, Rac, and Rho, regulate these actin cytoskeleton-dependent cellular activities (Takai et al. 2001; Hall 2005). In fibroblasts such as NIH 3T3 and Swiss 3T3 cells, Cdc42 regulates the formation of filopodia; Rac regulates the formation of lamellipodia and ruffles; and Rho regulates the formation of stress fibers and focal adhesions. Cdc42 and Rac activate the Arp2/3 complex through their respective target proteins, Wiskott-Aldrich syndrome protein (WASP)/neural (N-)WASP and WASP-family verprolin-homologous protein (WAVE) (Takenawa and Suetsugu 2007). The Arp2/3 complex interacts with the sides of preexisting actin filaments (F-actin) to promote actin polymerization and generate a branched F-actin network. Rho...

This is a preview of subscription content, log in to check access.


  1. Chen XM, Splinter PL, Tietz PS, Hunag BQ, Billadeau DD, LaRusso NF. Phosphatidylinositol 3-kinase and frabin mediate Cryptosporidium parvum cellular invasion via activation of Cdc42. J Biol Chem. 2004;279:31671–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Delague V, Jacquier A, Hamadouche T, Poitelon Y, Baudot C, Boccaccio I, Chouery E, Chaouch M, Kassouri N, Jabbour R, Grid D, Mégarbané A, Haase G, Lévy N. Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. Am J Hum Genet. 2007;81:1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Gruenheid S, Finlay BB. Microbial pathogenesis and cytoskeletal function. Nature. 2003;422:775–81.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Hall A. Rho GTPases and the control of cell behavior. Biochem Soc Trans. 2005;33:891–5.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ikeda W, Nakanishi H, Takekuni K, Itoh S, Takai Y. Identification of splicing variants of frabin with partly different functions and tissue distribution. Biochem Biophys Res Commun. 2001a;286:1066–72.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ikeda W, Nakanishi H, Tanaka Y, Tachibana K, Takai Y. Cooperation of Cdc42 small G protein-activating and actin filament-binding activities of frabin in microspike formation. Oncogene. 2001b;20:3457–63.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Kim Y, Ikeda W, Nakanishi H, Tanaka Y, Takekuni K, Itoh S, Monden M, Takai Y. Association of frabin with specific actin and membrane structures. Genes Cells. 2002;7:413–20.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Kutateladze TG. Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain. Biochim Biophys Acta. 2006;1761:868–77.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Lecompte O, Poch O, Laporte J. PtdIns5P regulation through evolution: role in membrane trafficking? Trends Biochem Sci. 2008;33:453–60.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Lemmon MA. Pleckstrin homology domains: not just for phosphoinositides. Biochem Soc Trans. 2004;32:707–11.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Nakanishi H, Takai Y. Frabin and other related Cdc42-specific guanine nucleotide exchange factors couple the actin cytoskeleton with the plasma membrane. J Cell Mol Med. 2008;12:1169–76.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Obaishi H, Nakanishi H, Mandai K, Satoh K, Satoh A, Takahashi K, Miyahara M, Nishioka H, Takaishi K, Takai Y. Frabin, a novel FGD1-related actin filament-binding protein capable of changing cell shape and activating c-Jun N-terminal kinase. J Biol Chem. 1998;273:18697–700.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ono Y, Nakanishi H, Nishimura M, Kakizaki M, Takahashi K, Miyahara M, Satoh-Horikawa K, Mandai K, Takai Y. Two actions of frabin: direct activation of Cdc42 and indirect activation of Rac. Oncogene. 2000;19:3050–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Pasteris NG, Cadle A, Logie LJ, Porteous ME, Schwartz CE, Stevenson RE, Glover TW, Wilroy RS, Gorski JL. Isolation and characterization of the faciogenital dysplasia (Aarskog-Scott syndrome) gene: a putative Rho/Rac guanine nucleotide exchange factor. Cell. 1994;79:669–78.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Rossman KL, Worthylake DK, Snyder JT, Siderovski DP, Campbell SL, Sondek J. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. EMBO J. 2002;21:1315–26.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Sankaran VG, Klein DE, Sachdeva MM, Lemmon MA. High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization. Biochemistry. 2001;40:8581–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Stendel C, Roos A, Deconinck T, Pereira J, Castagner F, Niemann A, Kirschner J, Korinthenberg R, Ketelsen UP, Battaloglu E, Parman Y, Nicholson G, Ouvrier R, Seeger J, De Jonghe P, Weis J, Krüttgen A, Rudnik-Schöneborn S, Bergmann C, Suter U, Zerres K, Timmerman V, Relvas JB, Senderek J. Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4. Am J Hum Genet. 2007;81:158–64.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev. 2001;81:153–208.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Takenawa T, Suetsugu S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol. 2007;8:37–48.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Umikawa M, Obaishi H, Nakanishi H, Satoh-Horikawa K, Takahashi K, Hotta I, Matsuura Y, Takai Y. Association of frabin with the actin cytoskeleton is essential for microspike formation through activation of Cdc42 small G protein. J Biol Chem. 1999;274:25197–200.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Yasuda T, Ohtsuka T, Inoue E, Yokoyama S, Sakisaka T, Kodama A, Takaishi K, Takai Y. Importance of spatial activation of Cdc42 and Rac small G proteins by frabin for microspike formation in MDCK cells. Genes Cells. 2000;5:583–91.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Molecular Pharmacology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
  2. 2.Division of Pathogenic Signaling, Department of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobeJapan