Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

PKR

  • Anthony John Sadler
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_51

Synonyms

Historical Background

Protein kinase R (PKR) was identified through its function in regulating host protein synthesis during virus infection (Farrell et al. 1977; Metz and Esteban 1972). This regulation is enacted through phosphorylation of the eukaryotic initiation factor 2α (EIF2α), marking PKR as a member of a small kinase family that constitutes this universal stress response pathway in eukaryotes (Roberts et al. 1976). A number of additional protein substrates for PKR have been identified, although the consequence of this is not well characterized. The transcript’s cDNA was cloned and the...

This is a preview of subscription content, log in to check access.

References

  1. Abraham N, Stojdl DF, Duncan PI, Methot N, Ishii T, Dube M, et al. Characterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase PKR. J Biol Chem. 1999;274(9):5953–62.CrossRefPubMedGoogle Scholar
  2. Barber GN, Edelhoff S, Katze MG, Disteche CM. Chromosomal assignment of the interferon-inducible double-stranded RNA-dependent protein kinase (PRKR) to human chromosome 2p21-p22 and mouse chromosome 17 E2. Genomics. 1993;16(3):765–7.CrossRefPubMedGoogle Scholar
  3. Ben-Asouli Y, Banai Y, Pel-Or Y, Shir A, Kaempfer R. Human interferon-gamma mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell. 2002;108(2):221–32.CrossRefPubMedGoogle Scholar
  4. Blalock WL, Piazzi M, Bavelloni A, Raffini M, Faenza I, D’Angelo A, et al. Identification of the PKR nuclear interactome reveals roles in ribosome biogenesis, mRNA processing and cell division. J Cell Physiol. 2014;229(8):1047–60.CrossRefPubMedGoogle Scholar
  5. Bommer UA, Borovjagin AV, Greagg MA, Jeffrey IW, Russell P, Laing KG, et al. The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA. 2002;8(4):478–96.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bonnet MC, Weil R, Dam E, Hovanessian AG, Meurs EF. PKR stimulates NF-kappaB irrespective of its kinase function by interacting with the IkappaB kinase complex. Mol Cell Biol. 2000;20(13):4532–42.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Clerzius G, Shaw E, Daher A, Burugu S, Gelinas JF, Ear T, et al. The PKR activator, PACT, becomes a PKR inhibitor during HIV-1 replication. Retrovirology. 2013;10:96.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cuddihy AR, Wong AH, Tam NW, Li S, Koromilas AE. The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene. 1999;18(17):2690–702.CrossRefPubMedGoogle Scholar
  9. Dar AC, Dever TE, Sicheri F. Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell. 2005;122(6):887–900.CrossRefPubMedGoogle Scholar
  10. de la Cruz-Herrera CF, Campagna M, Garcia MA, Marcos-Villar L, Lang V, Baz-Martinez M, et al. Activation of the double-stranded RNA-dependent protein kinase PKR by small ubiquitin-like modifier (SUMO). J Biol Chem. 2014;289(38):26357–67.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Deb A, Zamanian-Daryoush M, Xu Z, Kadereit S, Williams BR. Protein kinase PKR is required for platelet-derived growth factor signaling of c-fos gene expression via Erks and Stat3. EMBO J. 2001;20(10):2487–96.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Delgado Andre N, De Lucca FL. Non-coding transcript in T cells (NTT): antisense transcript activates PKR and NF-kappaB in human lymphocytes. Blood Cells Mol Dis. 2008;40(2):227–32.CrossRefPubMedGoogle Scholar
  13. Dey M, Cao C, Dar AC, Tamura T, Ozato K, Sicheri F, et al. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell. 2005;122(6):901–13.CrossRefPubMedGoogle Scholar
  14. Dickerman BK, White CL, Kessler PM, Sadler AJ, Williams BR, Sen GC. The protein activator of protein kinase R, PACT/RAX, negatively regulates protein kinase R during mouse anterior pituitary development. FEBS J. 2015;282(24):4766–81.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Donze O, Abbas-Terki T, Picard D. The Hsp90 chaperone complex is both a facilitator and a repressor of the dsRNA-dependent kinase PKR. EMBO J. 2001;20(14):3771–80.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Farrell PJ, Balkow K, Hunt T, Jackson RJ, Trachsel H. Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell. 1977;11(1):187–200.CrossRefPubMedGoogle Scholar
  17. Fasciano S, Hutchins B, Handy I, Patel RC. Identification of the heparin-binding domains of the interferon-induced protein kinase, PKR. FEBS J. 2005;272(6):1425–39.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Gil J, Esteban M, Roth D. In vivo regulation of the dsRNA-dependent protein kinase PKR by the cellular glycoprotein p67. Biochemistry. 2000;39(51):16016–25.CrossRefPubMedGoogle Scholar
  19. Gil J, Garcia MA, Gomez-Puertas P, Guerra S, Rullas J, Nakano H, et al. TRAF family proteins link PKR with NF-kappa B activation. Mol Cell Biol. 2004;24(10):4502–12.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Han AP, Fleming MD, Chen JJ. Heme-regulated eIF2alpha kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and beta-thalassemia. J Clin Invest. 2005;115(6):1562–70.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6(5):1099–108.CrossRefPubMedGoogle Scholar
  22. Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol. 2001;2(9):835–41.CrossRefPubMedGoogle Scholar
  23. Irving AT, Wang D, Vasilevski O, Latchoumanin O, Kozer N, Clayton AH, et al. Regulation of actin dynamics by protein kinase R control of gelsolin enforces basal innate immune defense. Immunity. 2012;36(5):795–806.CrossRefPubMedGoogle Scholar
  24. Katze MG, Wambach M, Wong ML, Garfinkel M, Meurs E, Chong K, et al. Functional expression and RNA binding analysis of the interferon-induced, double-stranded RNA-activated, 68,000-Mr protein kinase in a cell-free system. Mol Cell Biol. 1991;11(11):5497–505.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kumar A, Yang YL, Flati V, Der S, Kadereit S, Deb A, et al. Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. EMBO J. 1997;16(2):406–16.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kumar KU, Srivastava SP, Kaufman RJ. Double-stranded RNA-activated protein kinase (PKR) is negatively regulated by 60S ribosomal subunit protein L18. Mol Cell Biol. 1999;19(2):1116–25.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Langland JO, Kao PN, Jacobs BL. Nuclear factor-90 of activated T-cells: a double-stranded RNA-binding protein and substrate for the double-stranded RNA-dependent protein kinase, PKR. Biochemistry. 1999;38(19):6361–8.CrossRefPubMedGoogle Scholar
  28. Li H, Chen J, Qi Y, Dai L, Zhang M, Frank JA, et al. Deficient PKR in RAX/PKR association ameliorates ethanol-induced neurotoxicity in the developing cerebellum. Cerebellum. 2015;14(4):386–97.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundback P, et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature. 2012;488(7413):670–4.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Metz DH, Esteban M. Interferon inhibits viral protein synthesis in L cells infected with vaccinia virus. Nature. 1972;238(5364):385–8.CrossRefPubMedGoogle Scholar
  31. Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell. 1990;62(2):379–90.CrossRefPubMedGoogle Scholar
  32. Mittelstadt M, Frump A, Khuu T, Fowlkes V, Handy I, Patel CV, et al. Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. Nucleic Acids Res. 2008;36(3):998–1008.CrossRefPubMedGoogle Scholar
  33. Mundschau LJ, Faller DV. Endogenous inhibitors of the dsRNA-dependent eIF-2 alpha protein kinase PKR in normal and ras-transformed cells. Biochimie. 1994;76(8):792–800.CrossRefPubMedGoogle Scholar
  34. Nakamura T, Furuhashi M, Li P, Cao H, Tuncman G, Sonenberg N, et al. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell. 2010;140(3):338–48.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Nanduri S, Carpick BW, Yang Y, Williams BR, Qin J. Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J. 1998;17(18):5458–65.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Okumura F, Okumura AJ, Uematsu K, Hatakeyama S, Zhang DE, Kamura T. Activation of double-stranded RNA-activated protein kinase (PKR) by interferon-stimulated gene 15 (ISG15) modification down-regulates protein translation. J Biol Chem. 2013;288(4):2839–47.CrossRefPubMedGoogle Scholar
  37. Oner R, Agarwal S, Dimovski AJ, Efremov GD, Petkov GH, Altay C, et al. The G----A mutation at position +22 3′ to the Cap site of the beta-globin gene as a possible cause for a beta-thalassemia. Hemoglobin. 1991;15(1–2):67–76.CrossRefPubMedGoogle Scholar
  38. Osman F, Jarrous N, Ben-Asouli Y, Kaempfer R. A cis-acting element in the 3′-untranslated region of human TNF-alpha mRNA renders splicing dependent on the activation of protein kinase PKR. Genes Dev. 1999;13(24):3280–93.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Pang Q, Christianson TA, Keeble W, Koretsky T, Bagby GC. The anti-apoptotic function of Hsp70 in the interferon-inducible double-stranded RNA-dependent protein kinase-mediated death signaling pathway requires the Fanconi anemia protein, FANCC. J Biol Chem. 2002;277(51):49638–43.CrossRefPubMedGoogle Scholar
  40. Pang Q, Christianson TA, Koretsky T, Carlson H, David L, Keeble W, et al. Nucleophosmin interacts with and inhibits the catalytic function of eukaryotic initiation factor 2 kinase PKR. J Biol Chem. 2003;278(43):41709–17.CrossRefPubMedGoogle Scholar
  41. Park H, Davies MV, Langland JO, Chang HW, Nam YS, Tartaglia J, et al. TAR RNA-binding protein is an inhibitor of the interferon-induced protein kinase PKR. Proc Natl Acad Sci USA. 1994;91(11):4713–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Patel RC, Sen GC. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J. 1998;17(15):4379–90.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Peel AL, Rao RV, Cottrell BA, Hayden MR, Ellerby LM, Bredesen DE. Double-stranded RNA-dependent protein kinase, PKR, binds preferentially to Huntington’s disease (HD) transcripts and is activated in HD tissue. Hum Mol Genet. 2001;10(15):1531–8.CrossRefPubMedGoogle Scholar
  44. Perkins DJ, Qureshi N, Vogel SN. A Toll-like receptor-responsive kinase, protein kinase R, is inactivated in endotoxin tolerance through differential K63/K48 ubiquitination. MBio. 2010;1(5) e00239-10.CrossRefGoogle Scholar
  45. Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 2013;9(8):e1003709.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Polyak SJ, Tang N, Wambach M, Barber GN, Katze MG. The P58 cellular inhibitor complexes with the interferon-induced, double-stranded RNA-dependent protein kinase, PKR, to regulate its autophosphorylation and activity. J Biol Chem. 1996;271(3):1702–7.CrossRefPubMedGoogle Scholar
  47. Roberts WK, Hovanessian A, Brown RE, Clemens MJ, Kerr IM. Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature. 1976;264(5585):477–80.CrossRefPubMedGoogle Scholar
  48. Sadler AJ, Latchoumanin O, Hawkes D, Mak J, Williams BR. An antiviral response directed by PKR phosphorylation of the RNA helicase A. PLoS Pathog. 2009;5(2):e1000311.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Saelens X, Kalai M, Vandenabeele P. Translation inhibition in apoptosis: caspase-dependent PKR activation and eIF2-alpha phosphorylation. J Biol Chem. 2001;276(45):41620–8.CrossRefPubMedGoogle Scholar
  50. Shen S, Niso-Santano M, Adjemian S, Takehara T, Malik SA, Minoux H, et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell. 2012;48(5):667–80.CrossRefPubMedGoogle Scholar
  51. Silva AM, Whitmore M, Xu Z, Jiang Z, Li X, Williams BR. Protein kinase R (PKR) interacts with and activates mitogen-activated protein kinase kinase 6 (MKK6) in response to double-stranded RNA stimulation. J Biol Chem. 2004;279(36):37670–6.CrossRefPubMedGoogle Scholar
  52. Singh M, Patel RC. Increased interaction between PACT molecules in response to stress signals is required for PKR activation. J Cell Biochem. 2012;113(8):2754–64.CrossRefPubMedGoogle Scholar
  53. Talloczy Z, Jiang W, Virgin HW, Leib DA, Scheuner D, Kaufman RJ, et al. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA. 2002;99(1):190–5.CrossRefPubMedGoogle Scholar
  54. Tan SL, Tareen SU, Melville MW, Blakely CM, Katze MG. The direct binding of the catalytic subunit of protein phosphatase 1 to the PKR protein kinase is necessary but not sufficient for inactivation and disruption of enzyme dimer formation. J Biol Chem. 2002;277(39):36109–17.CrossRefPubMedGoogle Scholar
  55. Toth AM, Zhang P, Das S, George CX, Samuel CE. Interferon action and the double-stranded RNA-dependent enzymes ADAR1 adenosine deaminase and PKR protein kinase. Prog Nucleic Acid Res Mol Biol. 2006;81:369–434.CrossRefPubMedGoogle Scholar
  56. Visvanathan KV, Goodbourn S. Double-stranded RNA activates binding of NF-kappa B to an inducible element in the human beta-interferon promoter. EMBO J. 1989;8(4):1129–38.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Watanabe S, Yamashita T, Taira H. A new double-stranded RNA binding protein (DRBP-120) is associated with double-stranded RNA-activated protein kinase (PKR). Biosci Biotechnol Biochem. 2006;70(7):1717–23.CrossRefPubMedGoogle Scholar
  58. Wen Z, Zhong Z, Darnell Jr JE. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995;82(2):241–50.CrossRefPubMedGoogle Scholar
  59. Wong AH, Tam NW, Yang YL, Cuddihy AR, Li S, Kirchhoff S, et al. Physical association between STAT1 and the interferon-inducible protein kinase PKR and implications for interferon and double-stranded RNA signaling pathways. EMBO J. 1997;16(6):1291–304.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Xu Z, Williams BR. The B56alpha regulatory subunit of protein phosphatase 2A is a target for regulation by double-stranded RNA-dependent protein kinase PKR. Mol Cell Biol. 2000;20(14):5285–99.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Yang YL, Reis LF, Pavlovic J, Aguzzi A, Schafer R, Kumar A, et al. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 1995;14(24):6095–106.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Yang X, Nath A, Opperman MJ, Chan C. The double-stranded RNA-dependent protein kinase differentially regulates insulin receptor substrates 1 and 2 in HepG2 cells. Mol Biol Cell. 2010;21(19):3449–58.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Yim HC, Wang D, Yu L, White CL, Faber PW, Williams BR, et al. The kinase activity of PKR represses inflammasome activity. Cell Res. 2016;26(3):367–79.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Yin Z, Haynie J, Williams BR, Yang YC. C114 is a novel IL-11-inducible nuclear double-stranded RNA-binding protein that inhibits protein kinase R. J Biol Chem. 2003;278(25):22838–45.CrossRefPubMedGoogle Scholar
  65. Yoon CH, Lee ES, Lim DS, Bae YS. PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53. Proc Natl Acad Sci USA. 2009;106(19):7852–7.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Yoshida K, Okamura H, Amorim BR, Ozaki A, Tanaka H, Morimoto H, et al. Double-stranded RNA-dependent protein kinase is required for bone calcification in MC3T3-E1 cells in vitro. Exp Cell Res. 2005;311(1):117–25.CrossRefPubMedGoogle Scholar
  67. Zamanian-Daryoush M, Mogensen TH, DiDonato JA, Williams BR. NF-kappaB activation by double-stranded-RNA-activated protein kinase (PKR) is mediated through NF-kappaB-inducing kinase and IkappaB kinase. Mol Cell Biol. 2000;20(4):1278–90.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Zhu PJ, Huang W, Kalikulov D, Yoo JW, Placzek AN, Stoica L, et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon-gamma-mediated disinhibition. Cell. 2011;147(6):1384–96.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonAustralia
  2. 2.Department of Molecular and Translational ScienceMonash UniversityClaytonAustralia