Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Nucleotide Receptor P2x

  • Jian-Bing Shen
  • Bruce T. Liang
  • Florentina Soto
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_50

Historical Background

The first evidence of purinergic signaling was described in 1929, when purines were found to underlie physiological responses in the circulatory and digestive system. After 50 years and a wealth of data supporting purine mediated effects in different systems, Burnstock presented the first direct evidence that ATP acts as a transmitter and introduced the concept of purinergic neurotransmission (Burnstock et al. 2010). Thus, ATP was recognized as both an intracellular energy source and an extracellular signaling molecule. Extracellular ATP has been implicated in intercellular communication in a wide variety of cells from different organisms and associated with a diverse array of biological effects. ATP is an ideal molecule for extracellular signaling, it is small, rapidly diffusing, highly unstable due to the presence of extracellular degrading enzymes and not abundant in the extracellular environment at resting conditions (Soto et al. 1997). ATP exerts it actions...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgment

F.S. would like to thank Marianela Masin for help with the Figures.

References

  1. Antonio LS, Costa RR, Gomes MD, Varanda WA. Mouse Leydig cells express multiple P2X receptor subunits. Purinergic Signal. 2009;5(3):277–87.CrossRefPubMedGoogle Scholar
  2. Aschrafi A, Sadtler S, Niculescu C, Rettinger J, Schmalzing G. Trimeric architecture of homomeric P2X2 and heteromeric P2X1 + 2 receptor subtypes. J Mol Biol. 2004;342(1):333–43.CrossRefPubMedGoogle Scholar
  3. Ase AR, Bernier LP, Blais D, Pankratov Y, Séguéla P. Modulation of heteromeric P2X1/5 receptors by phosphoinositides in astrocytes depends on the P2X1 subunit. J Neurochem. 2010;113(6):1676–84.PubMedGoogle Scholar
  4. Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol. 2004;240:31–304.CrossRefPubMedGoogle Scholar
  5. Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol. 2010;199(2):93–147.CrossRefGoogle Scholar
  6. Calvert JA, Evans RJ. Heterogeneity of P2X receptors in sympathetic neurons: contribution of neuronal P2X1 receptors revealed using knockout mice. Mol Pharmacol. 2004;65(1):139–48.CrossRefPubMedGoogle Scholar
  7. Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S. Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys Res Commun. 2005;332(1):17–27.CrossRefPubMedGoogle Scholar
  8. De Roo M, Rodeau JL, Schlichter R. Dehydroepiandrosterone potentiates native ionotropic ATP receptors containing the P2X2 subunit in rat sensory neurones. J Physiol. 2003;552(Pt 1):59–71.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Donnelly-Roberts D, McGaraughty S, Shieh CC, Honore P, Jarvis MF. Painful purinergic receptors. J Pharmacol Exp Ther. 2008;324(2):409–15.CrossRefPubMedGoogle Scholar
  10. Donnelly-Roberts DL, Namovic MT, Han P, Jarvis MF. Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol. 2009;157(7):1203–14.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dubyak GR. Go it alone no more–P2X7 joins the society of heteromeric ATP-gated receptor channels. Mol Pharmacol. 2007;72(6):1402–5.CrossRefPubMedGoogle Scholar
  12. Evans RJ, Lewis C, Buell G, Valera S, North RA, Surprenant A. Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2x purinoceptors). Mol Pharmacol. 1995;48(2):178–83.PubMedGoogle Scholar
  13. Ford AP, Gever JR, Nunn PA, Zhong Y, Cefalu JS, Dillon MP, Cockayne DA. Purinoceptors as therapeutic targets for lower urinary tract dysfunction. Br J Pharmacol. 2006;147(Suppl 2):S132–43.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fountain SJ, Burnstock G. An evolutionary history of P2X receptors. Purinergic Signal. 2009;5(3):269–72.CrossRefPubMedGoogle Scholar
  15. Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford AP. Pharmacology of P2X channels. Pflugers Arch. 2006;452(5):513–37.CrossRefPubMedGoogle Scholar
  16. Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD. Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol. 2007;72(6):1447–56.CrossRefPubMedGoogle Scholar
  17. Harhun MI, Povstyan OV, Gordienko DV. Purinoreceptor-mediated current in myocytes from renal resistance arteries. Br J Pharmacol. 2010;160(4):987–97.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hausmann R, Rettinger J, Gerevich Z, Meis S, Kassack MU, Illes P, Lambrecht G, Schmalzing G. The suramin analog 4,4′,4″,4″′-(carbonylbis(imino-5,1,3-benzenetriylbis (carbonylimino)))tetra-kis-benzenesulfonic acid (NF110) potently blocks P2X3 receptors: subtype selectivity is determined by location of sulfonic acid groups. Mol Pharmacol. 2006;69(6):2058–67.CrossRefPubMedGoogle Scholar
  19. Hechler B, Magnenat S, Zighetti ML, Kassack MU, Ullmann H, Cazenave JP, Evans R, Cattaneo M, Gachet C. Inhibition of platelet functions and thrombosis through selective or nonselective inhibition of the platelet P2 receptors with increasing doses of NF449 [4,4′,4″,4″′-(carbonylbis(imino-5,1,3-benzenetriylbis-(carbonylimino)))tetrakis-benzene-1,3-disulfonic acid octasodium salt]. J Pharmacol Exp Ther. 2005;314(1):232–43.CrossRefPubMedGoogle Scholar
  20. Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF. A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther. 2006;319(3):1376–85.CrossRefPubMedGoogle Scholar
  21. Hülsmann M, Nickel P, Kassack M, Schmalzing G, Lambrecht G, Markwardt F. NF449, a novel picomolar potency antagonist at human P2X1 receptors. Eur J Pharmacol. 2003;470:1–2):1–7.CrossRefPubMedGoogle Scholar
  22. Jaime-Figueroa S, Greenhouse R, Padilla F, Dillon MP, Gever JR, Ford AP. Discovery and synthesis of a novel and selective drug-like P2X(1) antagonist. Bioorg Med Chem Lett. 2005;15(13):3292–5.CrossRefPubMedGoogle Scholar
  23. Jarvis MF, Khakh BS. ATP-gated P2X cation-channels. Neuropharmacology. 2009;56(1):208–15.CrossRefPubMedGoogle Scholar
  24. Kassack MU, Braun K, Ganso M, Ullmann H, Nickel P, Böing B, Müller G, Lambrecht G. Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist. Eur J Med Chem. 2004;39(4):345–57.CrossRefPubMedGoogle Scholar
  25. Kawate T, Michel JC, Birdsong WT, Gouaux E. Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature. 2009;460(7255):592–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. King BF. Novel P2X7 receptor antagonists ease the pain. Br J Pharmacol. 2007;151(5):565–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. King BF, Knowles ID, Burnstock G, Ramage AG. Investigation of the effects of P2 purinoceptor ligands on the micturition reflex in female urethane-anaesthetized rats. Br J Pharmacol. 2004;142(3):519–30.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Klapperstück M, Büttner C, Nickel P, Schmalzing G, Lambrecht G, Markwardt F. Antagonism by the suramin analogue NF279 on human P2X(1) and P2X(7) receptors. Eur J Pharmacol. 2000;387(3):245–52.CrossRefPubMedGoogle Scholar
  29. Koshimizu TA, Tsujimoto G. Functional role of spliced cytoplasmic tails in P2X2-receptor-mediated cellular signaling. J Pharmacol Sci. 2006;101(4):261–6.CrossRefPubMedGoogle Scholar
  30. Makino T, McLysaght A. Interacting gene clusters and the evolution of the vertebrate immune system. Mol Biol Evol. 2008;25(9):1855–62.CrossRefPubMedGoogle Scholar
  31. Masin M, Kerschensteiner D, Dumke K, Rubio ME, Soto F. Fe65 interacts with P2X2 subunits at excitatory synapses and modulates receptor function. J Biol Chem. 2006;160(2):281–7.Google Scholar
  32. Murrell-Lagnado RD, Qureshi OS. Assembly and trafficking of P2X purinergic receptors. Mol Membr Biol. 2008;25(4):321–31.CrossRefPubMedGoogle Scholar
  33. Nicke A, Kuan YH, Masin M, Rettinger J, Marquez-Klaka B, Bender O, Gorecki D, Murrell-Lagnado RD, Soto F. A functional P2X7 splice variant with an alternative transmembrane domain 1 escapes gene inactivation in P2X7 knock-out mice. J Biol Chem. 2009;284(38):25813–22.PubMedPubMedCentralCrossRefGoogle Scholar
  34. North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002;82(4):1013–67.CrossRefPubMedGoogle Scholar
  35. North RA. Families of ion channels with two hydrophobic segments. Curr Opin Cell Biol. 2006;8(4):474–83.CrossRefGoogle Scholar
  36. Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998;50(3):413–92.PubMedGoogle Scholar
  37. Rettinger J, Schmalzing G, Damer S, Müller G, Nickel P, Lambrecht G. The suramin analogue NF279 is a novel and potent antagonist selective for the P2X(1) receptor. Neuropharmacology. 2000;39(11):2044–53.CrossRefPubMedGoogle Scholar
  38. Rettinger J, Braun K, Hochmann H, Kassack MU, Ullmann H, Nickel P, Schmalzing G, Lambrecht G. Profiling at recombinant homomeric and heteromeric rat P2X receptors identifies the suramin analogue NF449 as a highly potent P2X1 receptor antagonist. Neuropharmacology. 2005;48(3):461–8.CrossRefPubMedGoogle Scholar
  39. Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Atterbury-Thomas A, Evans RJ. Molecular properties of P2X receptors. Pflugers Arch. 2006;452(5):486–500.CrossRefPubMedGoogle Scholar
  40. Sneddon P, Westfall TD, Todorov LD, Todorova SM, Westfall DP, Nickel P, Kennedy C. The effect of P2 receptor antagonists and ATPase inhibition on sympathetic purinergic neurotransmission in the guinea-pig isolated vas deferens. Br J Pharmacol. 2000;129(6):1089–94.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Soto F, Garcia-Guzman M, Stuhmer W. Cloned ligand-gated channels activated by extracellular ATP (P2X receptors). J Membr Biol. 1997;160(2):91–100.CrossRefPubMedGoogle Scholar
  42. Soto F, Lambrecht G, Nickel P, Stühmer W, Busch AE. Antagonistic properties of the suramin analogue NF023 at heterologously expressed P2X receptors. Neuropharmacology. 1999;38(1):141–9.CrossRefPubMedGoogle Scholar
  43. Surprenant A, North RA. Signaling at purinergic P2X receptors. Annu Rev Physiol. 2009;71:333–59.CrossRefPubMedGoogle Scholar
  44. Zhou S-Y, Mamdani M, Qanud K, Shen J-B, Pappano A, Kumar TS, Jacobson KA, Hintze T, Recchia FA, Liang BT. Treatment of heart failure by a methanocarba derivative of adenosine monophosphate. Implication for a role of cardiac P2X purinergic receptors. J Pharmacol Exp Ther. 2010;333(3):920–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jian-Bing Shen
    • 1
  • Bruce T. Liang
    • 1
  • Florentina Soto
    • 2
  1. 1.Calhoun Cardiovascular CenterUniversity of Connecticut Health CenterFarmingtonUSA
  2. 2.Department of Ophthalmology and Visual SciencesWashington University in St. LouisSt. LouisUSA