Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Nobuyuki Takenaka
  • Takaya SatohEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_475


Historical Background

The tyrosine kinase ACK1 (activated Cdc42Hs-associated kinase 1) was first identified as a specific target of the small GTPase Cdc42 (Manser et al. 1993). ACK1, a related tyrosine kinase Tnk1, and the nontyrosine kinase protein Mig6 (Gene 33/receptor-associated late transducer) constitute a family of proteins with conserved domain structures. In addition to the kinase catalytic domain, various domains and amino acid sequence motifs, which are responsible for the interaction with diverse signal transducing proteins, are found in ACK1 (Fig. 1). Several types of splice variants (including a protein previously designated ACK2 (activated Cdc42Hs-associated kinase 2)) are present. Two orthologs of the mammalian ACK1 gene, DACK and DPR2, exist in the Drosophila melanogaster genome. In Caenorhabditis elegans, two orthologs encode ACK family protein...
This is a preview of subscription content, log in to check access.


  1. Buchwald M, Pietschmann K, Brand P, Günther A, Mahajan NP, Heinzel T, et al. SIAH ubiquitin ligases target the nonreceptor tyrosine kinase ACK1 for ubiquitinylation and proteasomal degradation. Oncogene. 2013;32:4913–20.PubMedCrossRefGoogle Scholar
  2. Chan W, Sit ST, Manser E. The Cdc42-associated kinase ACK1 is not autoinhibited but requires Src for activation. Biochem J. 2011;435:355–64.PubMedCrossRefGoogle Scholar
  3. Eisenmann KM, McCarthy JB, Simpson MA, Keely PJ, Guan JL, Tachibana K, Lim L, Manser E, Furcht LT, Iida J. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nat Cell Biol. 1999;1:507–13.PubMedCrossRefGoogle Scholar
  4. Galisteo ML, Yang Y, Ureña J, Schlessinger J. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci USA. 2006;103:9796–801.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Kato J, Kaziro Y, Satoh T. Activation of the guanine nucleotide exchange factor Dbl following ACK1-dependent tyrosine phosphorylation. Biochem Biophys Res Commun. 2000;268:141–7.PubMedCrossRefGoogle Scholar
  6. Kato-Stankiewicz J, Ueda S, Kataoka T, Kaziro Y, Satoh T. Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner. Biochem Biophys Res Commun. 2001;284:470–7.PubMedCrossRefGoogle Scholar
  7. Kelley LC, Weed SA. Cortactin is a substrate of activated Cdc42-associated kinase 1 (ACK1) during ligand-induced epidermal growth factor receptor downregulation. PLoS One. 2012;7:e44363.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Kiyono M, Kato J, Kataoka T, Kaziro Y, Satoh T. Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25Mm upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1. J Biol Chem. 2000;275:29788–93.PubMedCrossRefGoogle Scholar
  9. Lei X, Li YF, Chen GD, Ou DP, Qiu XX, Zuo CH, et al. Ack1 overexpression promotes metastasis and indicates poor prognosis of hepatocellular carcinoma. Oncotarget. 2015;6:40622–41.PubMedPubMedCentralGoogle Scholar
  10. Lin Q, Wang J, Childress C, Yang W. The activation mechanism of ACK1 (activated Cdc42-associated tyrosine kinase 1). Biochem J. 2012;445:255–64.PubMedCrossRefGoogle Scholar
  11. Linderoth E, Pilia G, Mahajan NP, Ferby I. Activated Cdc42-associated kinase 1 (Ack1) is required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor recruitment to lipid rafts and induction of cell death. J Biol Chem. 2013;288:32922–31.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Linseman DA, Heidenreich KA, Fisher SK. Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway. J Biol Chem. 2001;276:5622–8.PubMedCrossRefGoogle Scholar
  13. Liu Y, Karaca M, Zhang Z, Gioeli D, Earp HS, Whang YE. Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases. Oncogene. 2010;29:3208–16.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Lougheed JC, Chen RH, Mak P, Stout TJ. Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1. J Biol Chem. 2004;279:44039–45.PubMedCrossRefGoogle Scholar
  15. Mahajan K, Lawrence HR, Lawrence NJ, Mahajan NP. ACK1 tyrosine kinase interacts with histone demethylase KDM3A to regulate the mammary tumor oncogene HOXA1. J Biol Chem. 2014;289:28179–91.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Mahajan K, Mahajan NP. Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. J Cell Physiol. 2010;224:327–33.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA. 2007;104:8438–43.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Manser E, Leung T, Salihuddin H, Tan L, Lim L. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21 cdc42. Nature. 1993;363:364–7.PubMedCrossRefGoogle Scholar
  19. Nur-E-Kamal A, Zhang A, Keenan SM, Wang XI, Seraj J, Satoh T, et al. Requirement of activated Cdc42-associated kinase for survival of v-Ras-transformed mammalian cells. Mol Cancer Res. 2005;3:297–305.PubMedCrossRefGoogle Scholar
  20. Pao-Chun L, Chan PM, Chan W, Manser E. Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2: an analysis of ACK1 effects on Axl signaling. J Biol Chem. 2009;284:34954–63.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Prieto-Echagüe V, Gucwa A, Craddock BP, Brown DA, Miller WT. Cancer-associated mutations activate the nonreceptor tyrosine kinase Ack1. J Biol Chem. 2010;285:10605–15.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Satoh T, Kato J, Nishida K, Kaziro Y. Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation. FEBS Lett. 1996;386:230–4.PubMedCrossRefGoogle Scholar
  23. Shen F, Lin Q, Gu Y, Childress C, Yang W. Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation. Mol Biol Cell. 2007;18:732–42.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Teo M, Tan L, Lim L, Manser E. The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem. 2001;276:18392–8.PubMedCrossRefGoogle Scholar
  25. van der Horst EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J, et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci USA. 2005;102:15901–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Yang W, Lin Q, Guan JL, Cerione RA. Activation of the Cdc42-associated tyrosine kinase-2 (ACK-2) by cell adhesion via integrin β1. J Biol Chem. 1999;274:8524–30.PubMedCrossRefGoogle Scholar
  27. Yang W, Lo CG, Dispenza T, Cerione RA. The Cdc42 target ACK2 directly interacts with clathrin and influences clathrin assembly. J Biol Chem. 2001;276:17468–73.PubMedCrossRefGoogle Scholar
  28. Yokoyama N, Miller WT. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1: substrate specificity, authphosphorylation, and interaction with Hck. J Biol Chem. 2003;278:47713–23.PubMedCrossRefGoogle Scholar
  29. Wu S, Bellve KD, Fogarty KE, Melikian HE. Ack1 is a dopamine transporter endocytic brake that rescues a trafficking-dysregulated ADHD coding variant. Proc Natl Acad Sci USA. 2015;112:15480–5.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory of Cell Biology, Department of Biological Science, Graduate School of ScienceOsaka Prefecture UniversitySakai, OsakaJapan