Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

P2Y14 Receptor

  • Kenneth A. Jacobson
  • Ramachandran Balasubramanian
  • Antonella Ciancetta
  • Zhan-Guo Gao
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_471

Synonyms

Historical Background

Extracellular purine and pyrimidine nucleotides act as signaling molecules through the activation of P2X ion channels and P2Y G protein-coupled receptors (GPCRs) (Abbracchio et al. 2006). Among the eight members of the P2Y receptor family, four respond to extracellular uracil nucleotides: P2Y2, P2Y4, P2Y6, and P2Y14 receptors. None of the P2X ion channels are substantially activated by uracil nucleotides.

P2Y 2, P2Y 4, and P2Y 6 receptors belong to the P2Y 1-like subgroup of G q-coupled receptors, and the P2Y 14 receptor belongs to the P2Y 12-like subgroup that couples to  G protein αi to inhibit  adenylyl cyclase. The P2Y 14 receptor is distributed in various tissues, that is, placenta, adipose, stomach, intestine, spleen, thymus, lung, heart, mast cells, and discrete brain regions (Freeman et al. 2001; Harden et al. 2010). It is activated by uridine-5′-diphosphoglucose (UDPG, 1, Fig. 1), other endogenous UDP-sugars, and...
This is a preview of subscription content, log in to check access.

References

  1. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, et al. International union of pharmacology LVIII. Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev. 2006;58:281–341.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arase T, Uchida H, Kajitani T, Ono M, Tamaki K, Oda H, et al. The UDPglucose receptor P2RY14 triggers innate mucosal immunity in the female reproductive tract by inducing IL-8. J Immunol. 2009;182:7074–84.CrossRefPubMedGoogle Scholar
  3. Azroyan A, Cortez-Retamozo V, Bouley R, Liberman R, Ruan YC, Kiselev E, Jacobson KA, Pittet MJ, Brown D, Breton S. Renal intercalated cells sense and mediate sterile inflammation via the P2Y14 receptor. PLoS One. 2015;10(3):e0121419.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barrett MO, Sesma JI, Ball CB, Jayasekara PS, Jacobson KA, Lazarowski ER, Harden TK. A selective high affinity antagonist of the P2Y14 receptor inhibits UDP-glucose-stimulated chemotaxis of human neutrophils. Mol Pharmocol. 2013;84:41–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bassil AK, Bourdu S, Townson KA, Wheeldon A, Jarvie EM, Zebda N, et al. UDP-glucose modulates gastric function through P2Y14 receptor-dependent and -independent mechanisms. Am J Physiol Gastrointest Liver Physiol. 2009;296:G923–30.CrossRefPubMedGoogle Scholar
  6. Brautigam VM, Dubyak GR, Crain JM, Watters JJ. The inflammatory effects of UDP-glucose in N9 microglia are not mediated by P2Y14 receptor activation. Purinergic Signal. 2008;4:73–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Carter RL, Fricks IP, Barrett MO, Burianek LE, Zhou Y, Ko H, et al. Quantification of Gi-mediated inhibition of adenylyl cyclase activity reveals that UDP is a potent agonist of the human P2Y14 receptor. Mol Pharmacol. 2009;76:1341–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, et al. A G protein-coupled receptor for UDP-glucose. J Biol Chem. 2000;275:10767–71.  https://doi.org/10.1074/jbc.275.15.10767.CrossRefPubMedGoogle Scholar
  9. Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM. Identification of a novel human ADP receptor coupled to Gi. J Biol Chem. 2001;276:41479–85.CrossRefPubMedGoogle Scholar
  10. Crain JM, Nikodemova M, Watters JJ. Expression of P2 nucleotide receptors varies with age and sex in murine brain microglia. J. Neuroinflammation. 2009;6:24.  https://doi.org/10.1186/1742-2094-6-24.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Das A, Ko H, Burianek LE, Barrett MO, Harden TK, Jacobson KA. Human P2Y14 receptor agonists: truncation of the hexose moiety of uridine-5′-diphosphoglucose and its replacement with alkyl and aryl groups. J Med Chem. 2010;53:471–80.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Freeman K, Tsui P, Moore D, Emson PC, Vawter L, Naheed S, Lane P, Bawagan H, Herrity N, Murphy K, Sarau HM, Ames RS, Wilson S, Livi GP, Chambers JK. Cloning, pharmacology, and tissue distribution of G-protein-coupled receptor GPR105 (KIAA0001) rodent orthologs. Genomics. 2001 Dec;78(3):124–8.CrossRefPubMedGoogle Scholar
  13. Fricks I, Maddiletti S, Carter R, Lazarowski ER, Nicholas RA, Jacobson KA, Harden TK. UDP is a competitive antagonist at the human P2Y14 receptor and a full agonist at the rat P2Y14 receptor. J Pharmacol Exp Ther. 2008;325:588–94.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gao ZG, Ding Y, Jacobson KA. UDP-glucose acting at P2Y14 receptors is a mediator of mast cell degranulation. Biochem Pharmacol. 2010;79:873–9.CrossRefPubMedGoogle Scholar
  15. Gauthier JY, Belley M, Deschênes D, Fournier JF, Gagné S, Gareau Y, et al. The identification of 4,7-disubstituted naphthoic acid derivatives as UDP-competitive antagonists of P2Y 14. Bioorg Med Chem Lett. 2011;21:2836–9.  https://doi.org/10.1016/j.bmcl.2011.03.081.CrossRefPubMedGoogle Scholar
  16. Guay D, Beaulieu C, Belley M, Crane SN, DeLuca J, Gareau Y, et al. Synthesis and SAR of pyrimidine-based, non-nucleotide P2Y14 receptor antagonists. Bioorg Med Chem Lett. 2011;21:2832–5.  https://doi.org/10.1016/j.bmcl.2011.03.084.CrossRefPubMedGoogle Scholar
  17. Harden TK, Sesma JI, Fricks IP, Lazarowski ER. Signalling and pharmacological properties of the P2Y 14 receptor. Acta Physiol. 2010;199:149–60.  https://doi.org/10.1111/j.1748-1716.2010.02116.x.CrossRefGoogle Scholar
  18. Junker A, Balasubramanian R, Ciancetta A, Uliassi E, Kiselev E, Martiriggiano C, Trujillo K, Mtchedlidze G, Birdwell L, Brown KA, Harden TK, Jacobson KA. Structure-based design of 3-(4-aryl-1h-1,2,3-triazol-1-yl)-biphenyl derivatives as P2Y14 receptor antagonists. J Med Chem. 2016;  https://doi.org/10.1021/acs.jmedchem.6b00044.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kiselev E, Barrett M, Katritch V, Paoletta S, Weitzer CD, Hammes E, Yin AL, Zhao Q, Stevens RC, Harden TK, Jacobson KA. Exploring a 2-naphthoic acid template for the structure-based design of P2Y14 receptor antagonist molecular probes. ACS Chem Biol. 2014;9:2833–42.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kiselev E, Balasubramanian R, Uliassi E, Brown KA, Trujillo K, Katritch V, Hammes E, Stevens RC, Harden TK, Jacobson KA. Design, synthesis and pharmacological characterization of a fluorescent agonist of the P2Y14 receptor. Bioorg Med Chem Lett. 2015;25:4733–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kreda SM, Seminario-Vidal L, Heusden C, Lazarowski ER. Thrombin-promoted release of UDP-glucose from human astrocytoma cells. Br J Pharmacol. 2008;153:1528–37.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Lazarowski ER, Shea DA, Boucher RC, Harden TK. Release of cellular UDP-glucose as a potential extracellular signaling molecule. Mol Pharmacol. 2003;63:1190–7.CrossRefPubMedGoogle Scholar
  23. Meister J, Le Duc D, Ricken A, Burkhardt R, Thiery J, Pfannkuche H, Polte T, Grosse J, Schöneberg T, Schulz A. The G protein-coupled receptor P2Y14 influences insulin release and smooth muscle function in mice. J Biol Chem. 2014;289(34):23353–66.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Muller T, Bayer H, Myrtek D, Ferrari D, Sorichter S, Ziegenhagen MW, et al. The P2Y 14 receptor of airway epithelial cells: coupling to intracellular Ca 2+ and IL-8 secretion. Am J Respir Cell Mol Biol. 2005;33:601–9.CrossRefPubMedGoogle Scholar
  25. Robichaud J, Fournier JF, Gagne S, Gauthier JY, Hamel M, Han Y, Henault M, Kargman S, Levesque JF, Yael Mamane Y, Mancini J, Morin N, Mulrooney E, Wu J, Black WC. Applying the pro-drug approach to afford highly bioavailable antagonists of P2Y14. Bioorg Med Chem Lett. 2011;21:4366–8.CrossRefPubMedGoogle Scholar
  26. Sesma JI, Esther CR, Kreda SM, Jones L, O’Neal W, Nishihara S, et al. Endoplasmic reticulum/golgi nucleotide sugar transporters contribute to the cellular release of UDP-sugar signaling molecules. J Biol Chem. 2009;284:12572–83.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Sesma JI, Weitzer CD, Livraghi-Butrico A, Dang H, Donaldson S, Alexis NE, Jacobson KA, Harden TK, Lazarowski ER. UDP-glucose promtes neutrophil recruitment in the lung. Purinergic Signal. 2016;12:627–35.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Trujillo K, Paoletta S, Kiselev E, Jacobson KA. Molecular modeling of the human P2Y14 receptor: a template for structure-based design of selective agonist ligands. Bioorg Med Chem. 2015;23:4056–64.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Zhang K, Zhang J, Gao ZG, Paoletta S, Zhang D, Han GW, Li T, Ma L, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q. Agonist-bound structure of the human P2Y12R receptor. Nature. 2014;509:119–22.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Zippel N, Limbach CA, Ratajski N, Urban C, Pansky A, Luparello C, Kassack MU, Tobiasch E. Purinergic receptors influence the differentiation of human mesenchymal stem cells. Stem Cells Dev. 2011;  https://doi.org/10.1089/scd.2010.0576.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Kenneth A. Jacobson
    • 1
  • Ramachandran Balasubramanian
    • 1
  • Antonella Ciancetta
    • 1
  • Zhan-Guo Gao
    • 1
  1. 1.Laboratory of Bioorganic Chemistry and Molecular Recognition SectionNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUSA