Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Formyl Peptide Receptor

  • Erica L. SouthgateEmail author
  • Richard D. Ye
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_403



Historical Background

Formyl peptide receptor 1 (FPR1) was first discovered on human neutrophils through its ability to bind N-formylated peptides with high affinity (Schiffmann et al. 1975). Rabbit neutrophils exhibit similar binding properties. The 350-amino acid human FPR1 receptor was the first cloned leukocyte chemoattractant receptor (Boulay et al. 1990). Genes with homologous sequence (FPR2 and FPR3) were identified through low-stringency hybridization using the FPR1 cDNA. The FPR2 cDNA encodes a 351-residue protein and shares approximately 69% sequence identity with FPR1. FPR2 is a low-affinity receptor for the prototypic formyl peptide, N-formyl-Met-Leu-Phe (fMLF). It binds lipoxin A4 and therefore is termed FPR2/ALX (Ye et al. 2009). FPR3 encodes a 7TM receptor of 352 amino acids that shares 56% sequence identity with FPR1 but does not bind fMLF. Although these three human members of the formyl peptide receptor family are relatively similar in...

This is a preview of subscription content, log in to check access.


  1. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature. 1991;353(6345):668–70.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002;397(2):342–4.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bokoch GM. Chemoattractant signaling and leukocyte activation. Blood. 1995;86(5):1649–60.PubMedPubMedCentralGoogle Scholar
  4. Borregaard N. Development of neutrophil granule diversity. Ann N Y Acad Sci. 1997;832:62–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Boulay F, Tardif M, Brouchon L, Vignais P. Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA. Biochem Biophys Res Commun. 1990;168:1103–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Boxer LA, Yoder M, Bonsib S, Schmidt M, Ho P, Jersild R, et al. Effects of a chemotactic factor, N-formylmethionyl peptide, on adherence, superoxide anion generation, phagocytosis, and microtubule assembly of human polymorphonuclear leukocytes. J Lab Clin Med. 1979;93(3):506–14.PubMedPubMedCentralGoogle Scholar
  7. Heit B, Robbins SM, Downey CM, Guan Z, Colarusso P, Miller BJ, et al. PTEN functions to ‘prioritize’ chemotactic cues and prevent ‘distraction’ in migrating neutrophils. Nat Immunol. 2008;9(7):743–52.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Korchak HM, Wilkenfeld C, Rich AM, Radin AR, Vienne K, Rutherford LE. Stimulus response coupling in the human neutrophil. Differential requirements for receptor occupancy in neutrophil responses to a chemoattractant. J Biol Chem. 1984;259(12):7439–45.PubMedPubMedCentralGoogle Scholar
  9. Le Y, Murphy PM, Wang JM. Formyl-peptide receptors revisited. Trends Immunol. 2002;23(11):541–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Marasco WA, Phan SH, Krutzsch H, Showell HJ, Feltner DE, Nairn R, et al. Purification and identification of formyl-methionyl-leucyl- phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem. 1984;259:5430–9.PubMedPubMedCentralGoogle Scholar
  11. Migeotte I, Communi D, Parmentier M. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev. 2006;17(6):501–19.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Prossnitz ER. Desensitization of N-formylpeptide receptor-mediated activation is dependent upon receptor phosphorylation. J Biol Chem. 1997;272(24):15213–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Prossnitz ER, Ye RD. The N-formyl peptide receptor: a model for the study of chemoattractant receptor structure and function. Pharmacol Ther. 1997;74(1):73–102.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Rabiet MJ, Huet E, Boulay F. Human mitochondria-derived N-formylated peptides are novel agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides preferentially activate FPR. Eur J Immunol. 2005;35(8):2486–95.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Rabiet MJ, Huet E, Boulay F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie. 2007;89(9):1089–106.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Schiffmann E, Corcoran BA, Wahl SM. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975;72:1059–62.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, et al. P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell. 2002;108(6):809–21.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell. 2003;114(2):201–14.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev. 2009;61(2):119–61.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of Illinois College of MedicineChicagoUSA