Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Relaxin Family Peptide Receptors RXFP1 and RXFP2

  • Roger J. SummersEmail author
  • Michelle L. Halls
  • Ross A. D. Bathgate
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_362



Historical Background: Relaxin Family Peptides and Their Receptors

Relaxin was one of the first reproductive hormones to be identified, as a factor in the serum of pregnant guinea pigs that induced relaxation of the birth canal (Hisaw 1926). Until recently, relaxin was considered a hormone of pregnancy with little known of its roles in males and nonpregnant females. The isolation of relaxin from animal sources led to the determination of its structure, biological actions, and development of reliable bioassays (Schwabe and McDonald 1977; James et al. 1977; John et al. 1981), and this knowledge led to the use of recombinant DNA techniques to clone the rat (Hudson et al. 1981), pig (Haley et al. 1982), and human gene-1 (RLN1) (Hudson et al. 1983) and gene-2 relaxin (RLN2) genes (Hudson et al. 1984). The identification of other relaxin peptides and their cognate G protein-coupled receptors (GPCRs), more than 75 years after the identification...

This is a preview of subscription content, log in to check access.


  1. Adham IM, Burkhardt E, Benahmed M, Engel W. Cloning of a cDNA for a novel insulin-like peptide of the testicular Leydig cells. J Biol Chem. 1993;268(35):26668–72.PubMedPubMedCentralGoogle Scholar
  2. Ahmad N, Wang W, Nair R, Kapila S. Relaxin induces matrix-metalloproteinases-9 and -13 via RXFP1: induction of MMP-9 involves the PI3K, ERK, Akt and PKC-zeta pathways. Mol Cell Endocrinol. 2012;363(1–2):46–61.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alexiou K, Matschke K, Westphal A, Stangl K, Dschietzig T. Relaxin is a candidate drug for lung preservation: relaxin-induced protection of rat lungs from ischemia-reperfusion injury. J Heart Lung Transplant. 2010;29(4):454–60.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alexiou K, Wilbring M, Matschke K, Dschietzig T. Relaxin protects rat lungs from ischemia-reperfusion injury via inducible NO synthase: role of ERK-1/2, PI3K, and forkhead transcription factor FKHRL1. PLoS One. 2013;8(9):e75592.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anand-Ivell RJ, Relan V, Balvers M, Coiffec-Dorval I, Fritsch M, Bathgate RA, et al. Expression of the insulin-like peptide 3 (INSL3) hormone-receptor (LGR8) system in the testis. Biol Reprod. 2006;74(5):945–53.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anand-Ivell RJK, Heng K, Bartsch O, Ivell R. Relaxin signalling in THP-1 cells uses a novel phosphotyrosine-dependent pathway. Mol Cell Endocrinol. 2007;272:1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anand-Ivell R, Tremellen K, Dai Y, Heng K, Yoshida M, Knight PG, et al. Circulating insulin-like factor 3 (INSL3) in healthy and infertile women. Hum Reprod. 2013;28(11):3093–102.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ascoli M, Fanelli F, Segaloff DL. The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev. 2002;23(2):141–74.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baccari MC, Bani D, Bigazzi M, Calamai F. Influence of relaxin on the neurally induced relaxant responses of the mouse gastric fundus. Biol Reprod. 2004;71(4):1325–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baccari MC, Nistri S, Vannucchi MG, Calamai F, Bani D. Reversal by relaxin of altered ileal spontaneous contractions in dystrophic (mdx) mice through a nitric oxide-mediated mechanism. Am J Phys Regul Integr Comp Phys. 2007;293(2):R662–8.Google Scholar
  11. Bani D. Relaxin and breast cancer. Bull Cancer. 1997;84(2):179–82.PubMedPubMedCentralGoogle Scholar
  12. Bani G, Bani ST, Bigazzi M, Bianchi S. Effects of relaxin on the microvasculature of mouse mammary gland. Histol Histopathol. 1988;3(4):337–43.PubMedPubMedCentralGoogle Scholar
  13. Bani D, Failli P, Bello MG, Thiemermann C, Bani Sacchi T, Bigazzi M, et al. Relaxin activates the L-arginine-nitric oxide pathway in vascular smooth muscle cells in culture. Hypertension. 1998a;31(6):1240–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bani D, Masini E, Bello MG, Bigazzi M, Sacchi TB. Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart. Am J Pathol. 1998b;152(5):1367–76.PubMedPubMedCentralGoogle Scholar
  15. Bani D, Nistri S, Quattrone S, Bigazzi M, Sacchi TB. Relaxin causes changes of the liver. In vivo studies in rats. Horm Metab Res. 2001;33(3):175–80.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bani-Sacchi T, Bigazzi M, Bani D, Mannaioni PF, Masini E. Relaxin-induced increased coronary flow through stimulation of nitric oxide production. Br J Pharmacol. 1995;116:1589–94.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bartsch O, Bartlick B, Ivell R. Relaxin signalling links tyrosine phosphorylation to phosphodiesterase and adenylyl cyclase activity. Mol Hum Reprod. 2001;7(9):799–809.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bathgate R, Balvers M, Hunt N, Ivell R. Relaxin-like factor gene is highly expressed in the bovine ovary of the cycle and pregnancy: sequence and messenger ribonucleic acid analysis. Biol Reprod. 1996;55:1452–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bathgate R, Moniac N, Bartlick B, Schumacher M, Fields M, Ivell R. Expression and regulation of relaxin-like factor gene transcripts in the bovine ovary: differentiation-dependent expression in theca cell cultures. Biol Reprod. 1999;61:1090–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bathgate RAD, Hsueh AJW, Sherwood OD. Physiology and molecular biology of the relaxin peptide family. In: Neill JD, editor. Knobil and Neill’s physiology of reproduction. 3rd ed. Boston: Academic; 2006a.Google Scholar
  21. Bathgate RA, Lin F, Hanson NF, Otvos Jr L, Guidolin A, Giannakis C, et al. Relaxin-3: improved synthesis strategy and demonstration of its high-affinity interaction with the relaxin receptor LGR7 both in vitro and in vivo. Biochemistry. 2006b;45(3):1043–53.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ. International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev. 2006c;58(1):7–31.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bathgate RA, Lekgabe ED, McGuane JT, Su Y, Pham T, Ferraro T, et al. Adenovirus-mediated delivery of relaxin reverses cardiac fibrosis. Mol Cell Endocrinol. 2008;280(1–2):30–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev. 2013;93(1):405–80.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bennett RG. Relaxin and its role in the development and treatment of fibrosis. Transl Res. 2009;154(1):1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bhushan S, Kondo K, Polhemus DJ, Otsuka H, Nicholson CK, Tao YX, et al. Nitrite therapy improves left ventricular function during heart failure via restoration of nitric oxide-mediated cytoprotective signaling. Circ Res. 2014;114(8):1281–91.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bialek J, Kunanuvat U, Hombach-Klonisch S, Spens A, Stetefeld J, Sunley K, et al. Relaxin enhances the collagenolytic activity and in vitro invasiveness by upregulating matrix metalloproteinases in human thyroid carcinoma cells. Mol Cancer Res. 2011;9(6):673–87.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bigazzi M, Del MA, Petrucci F, Casali R, Novelli GP. The local administration of relaxin induces changes in the microcirculation of the rat mesocaecum. Acta Endocrinol Copenh. 1986;112(2):296–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Binder C, Hagemann T, Husen B, Schulz M, Einspanier A. Relaxin enhances in-vitro invasiveness of breast cancer cell lines by up-regulation of matrix metalloproteases. Mol Hum Reprod. 2002;8(9):789–96.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Binder C, Simon A, Binder L, Hagemann T, Schulz M, Emons G, et al. Elevated concentrations of serum relaxin are associated with metastatic disease in breast cancer patients. Breast Cancer Res Treat. 2004;87(2):157–66.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bitto A, Irrera N, Minutoli L, Calo M, Lo Cascio P, Caccia P, et al. Relaxin improves multiple markers of wound healing and ameliorates the disturbed healing pattern of genetically diabetic mice. Clin Sci. 2013;125(12):575–85.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Boehnert MU, Hilbig H, Armbruster FP. Relaxin as an additional protective substance in preserving and reperfusion solution for liver transplantation, shown in a model of isolated perfused rat liver. Ann N Y Acad Sci. 2005;1041:434–40.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Boehnert MU, Armbruster FP, Hilbig H. Relaxin as a protective substance in preservation solutions for organ transplantation, as shown in an isolated perfused rat liver model. Transplant Proc. 2008;40(4):978–80.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Boehnert MU, Armbruster FP, Hilbig H. Relaxin as a protective substance in the preserving solution for liver transplantation: spectrophotometric in vivo imaging of local oxygen supply in an isolated perfused rat liver model. Ann N Y Acad Sci. 2009;1160:320–1.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bogatcheva NV, Ferlin A, Feng S, Truong A, Gianesello L, Foresta C, et al. T222P mutation of the insulin-like 3 hormone receptor LGR8 is associated with testicular maldescent and hinders receptor expression on the cell surface membrane. Am J Physiol Endocrinol Metab. 2007;292:E138–44.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Bogzil AH, Eardley R, Ashton N. Relaxin-induced changes in renal sodium excretion in the anesthetized male rat. Am J Phys Regul Integr Comp Phys. 2005;288(1):R322–8.Google Scholar
  37. Bohm M, Eschenhagen T, Gierschik P, Larisch K, Lensche H, Mende U, et al. Radioimmunochemical quantification of Gi alpha in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. J Mol Cell Cardiol. 1994;26(2):133–49.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Bonner JS, Lantier L, Hocking KM, Kang L, Owolabi M, James FD, et al. Relaxin treatment reverses insulin resistance in mice fed a high-fat diet. Diabetes. 2013;62(9):3251–60.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Braddon SA. Relaxin-dependent adenosine 6′,5′-monophosphate concentration changes in the mouse pubic symphysis. Endocrinology. 1978;102(4):1292–9.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Bruell S, Kong RC, Petrie EJ, Hoare B, Wade JD, Scott DJ, et al. Chimeric RXFP1 and RXFP2 receptors highlight the similar mechanism of activation utilizing their N-terminal low-density lipoprotein class A modules. Front Endocrinol. 2013;4:171.CrossRefGoogle Scholar
  41. Bullesbach EE, Schwabe C. Functional importance of the A chain loop in relaxin and insulin. J Biol Chem. 1994;269(18):13124–8.PubMedPubMedCentralGoogle Scholar
  42. Bullesbach EE, Schwabe C. Synthetic cross-links arrest the C-terminal region of the relaxin-like factor in an active conformation. Biochemistry. 2004;43(25):8021–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Bullesbach EE, Schwabe C. The trap-like relaxin-binding site of LGR7. J Biol Chem. 2005a;280:14051–6.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Bullesbach EE, Schwabe C. LGR8 signal activation by the relaxin-like factor. J Biol Chem. 2005b;280:14856–90.Google Scholar
  45. Carey RM. Cardiovascular and renal regulation by the angiotensin type 2 receptor: the AT2 receptor comes of age. Hypertension. 2005;45(5):840–4.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Carrell DT, Peterson CM, Urry RL. The binding of recombinant human relaxin to human spermatozoa. Endocrinol Res. 1995;21:697–707.CrossRefGoogle Scholar
  47. Casten GG, Boucek RJ. Use of relaxin in the treatment of scleroderma. J Am Med Assoc. 1958;166(4):319–24.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Chabre M, Deterre P, Antonny B. The apparent cooperativity of some GPCRs does not necessarily imply dimerization. Trends Pharmacol Sci. 2009;30(4):182–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Chan SL, Cipolla MJ. Relaxin causes selective outward remodeling of brain parenchymal arterioles via activation of peroxisome proliferator-activated receptor-gamma. FASEB J. 2011;25(9):3229–39.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Chan LJ, Rosengren KJ, Layfield SL, Bathgate RA, Separovic F, Samuel CS, et al. Identification of key residues essential for the structural fold and receptor selectivity within the A-chain of human gene-2 (H2) relaxin. J Biol Chem. 2012;287(49):41152–64.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Cheah SH, Sherwood OD. Target tissues for relaxin in the rat: tissue distribution of injected 125I-labeled relaxin and tissue changes in adenosine 3′,5′-monophosphate levels after in vitro relaxin incubation. Endocrinology. 1980;106(4):1203–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Chen GA, Huang JR, Tseng L. The effect of relaxin on cyclic adenosine 3′,5′-monophosphate concentrations in human endometrial glandular epithelial cells. Biol Reprod. 1988;39(3):519–25.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Chen CZ, Southall N, Xiao J, Marugan JJ, Ferrer M, Hu X, et al. Identification of small-molecule agonists of human relaxin family receptor 1 (RXFP1) by using a homogenous cell-based cAMP assay. J Biomol Screen. 2013;18(6):670–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Chow BS, Chew EG, Zhao C, Bathgate RA, Hewitson TD, Samuel CS. Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS. PLoS One. 2012;7(8):e42714.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Chow BS, Kocan M, Bosnyak S, Sarwar M, Wigg B, Jones ES, et al. Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney Int. 2014;86:75–85.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Collino M, Rogazzo M, Pini A, Benetti E, Rosa AC, Chiazza F, et al. Acute treatment with relaxin protects the kidney against ischaemia/reperfusion injury. J Cell Mol Med. 2013;17(11):1494–505.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Conrad KP. Unveiling the vasodilatory actions and mechanisms of relaxin. Hypertension. 2010;56(1):2–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Conrad KP. Maternal vasodilation in pregnancy: the emerging role of relaxin. Am J Phys Regul Integr Comp Phys. 2011;301(2):R267–75.Google Scholar
  59. Conrad KP, Novak J. Emerging role of relaxin in renal and cardiovascular function. Am J Phys Regul Integr Comp Phys. 2004;287(2):R250–61.Google Scholar
  60. Conrad KP, Shroff SG. Effects of relaxin on arterial dilation, remodeling, and mechanical properties. Curr Hypertens Rep. 2011;13(6):409–20.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Conrad KP, Debrah DO, Novak J, Danielson LA, Shroff SG. Relaxin modifies systemic arterial resistance and compliance in conscious, nonpregnant rats. Endocrinology. 2004;145(7):3289–96.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Cosen-Binker LI, Binker MG, Cosen R, Negri G, Tiscornia O. Relaxin prevents the development of severe acute pancreatitis. World J Gastroenterol. 2006;12(10):1558–68.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Coulson CC, Thorp Jr JM, Mayer DC, Cefalo RC. Central hemodynamic effects of recombinant human relaxin in the isolated, perfused rat heart model. Obstet Gynecol. 1996;87(4):610–2.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Danielson LA, Conrad KP. Time course and dose response of relaxin-mediated renal vasodilation, hyperfiltration, and changes in plasma osmolality in conscious rats. J Appl Physiol. 2003;95(4):1509–14.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Danielson LA, Sherwood OD, Conrad KP. Relaxin is a potent renal vasodilator in conscious rats. J Clin Investig. 1999;103(4):525–33.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Danielson LA, Kercher LJ, Conrad KP. Impact of gender and endothelin on renal vasodilation and hyperfiltration induced by relaxin in conscious rats. Am J Phys Regul Integr Comp Phys. 2000;279(4):R1298–304.Google Scholar
  67. Davis D, Liu X, Segaloff DL. Identification of the sites of N-linked glycosylation on the follicle-stimulating hormone (FSH) receptor and assessment of their role in FSH receptor function. Mol Endocrinol. 1995;9(2):159–70.PubMedPubMedCentralGoogle Scholar
  68. Debrah DO, Conrad KP, Danielson LA, Shroff SG. Effects of relaxin on systemic arterial hemodynamics and mechanical properties in conscious rats: sex dependency and dose response. J Appl Physiol. 2005;98(3):1013–20.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Debrah DO, Novak J, Matthews JE, Ramirez RJ, Shroff SG, Conrad KP. Relaxin is essential for systemic vasodilation and increased global arterial compliance during early pregnancy in conscious rats. Endocrinology. 2006;147(11):5126–31.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Debrah DO, Debrah JE, Haney JL, McGuane JT, Sacks MS, Conrad KP, et al. Relaxin regulates vascular wall remodeling and passive mechanical properties in mice. J Appl Physiol. 2011;111(1):260–71.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Defer N, Best-Belpomme M, Hanoune J. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol Ren Physiol. 2000;279(3):F400–16.CrossRefGoogle Scholar
  72. Del Borgo MP, Hughes RA, Bathgate RA, Lin F, Kawamura K, Wade JD. Analogs of insulin-like peptide 3 (INSL3) B-chain are LGR8 antagonists in vitro and in vivo. J Biol Chem. 2006;281(19):13068–74.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Dschietzig T, Richter C, Bartsch C, Bohme C, Heinze D, Ott F, et al. Flow-induced pressure differentially regulates endothelin-1, urotensin II, adrenomedullin, and relaxin in pulmonary vascular endothelium. Biochem Biophys Res Commun. 2001a;289(1):245–51.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Dschietzig T, Richter C, Bartsch C, Laule M, Armbruster FP, Baumann G, et al. The pregnancy hormone relaxin is a player in human heart failure. FASEB J. 2001b;15(12):2187–95.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Dschietzig T, Bartsch C, Richter C, Laule M, Baumann G, Stangl K. Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-kappaB. Circ Res. 2003;92(1):32–40.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Dschietzig T, Bartsch C, Stangl V, Baumann G, Stangl K. Identification of the pregnancy hormone relaxin as glucocorticoid receptor agonist. FASEB J. 2004;18(13):1536–8.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Dschietzig T, Bartsch C, Kinkel T, Baumann G, Stangl K. Myocardial relaxin counteracts hypertrophy in hypertensive rats. Ann N Y Acad Sci. 2005;1041:441–3.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Dschietzig T, Bartsch C, Baumann G, Stangl K. RXFP1-inactive relaxin activates human glucocorticoid receptor: further investigations into the relaxin-GR pathway. Regul Pept. 2009a;154(1–3):77–84.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Dschietzig T, Bartsch C, Wessler S, Baumann G, Stangl K. Autoregulation of human relaxin-2 gene expression critically involves relaxin and glucocorticoid receptor binding to glucocorticoid response half-sites in the relaxin-2 promoter. Regul Pept. 2009b;155(1–3):163–73.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Dschietzig T, Teichman S, Unemori E, Wood S, Boehmer J, Richter C, et al. Intravenous recombinant human relaxin in compensated heart failure: a safety, tolerability, and pharmacodynamic trial. J Card Fail. 2009c;15(3):182–90.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Dschietzig T, Alexiou K, Kinkel HT, Baumann G, Matschke K, Stangl K. The positive inotropic effect of relaxin-2 in human atrial myocardium is preserved in end-stage heart failure: role of G(i)-phosphoinositide-3 kinase signaling. J Card Fail. 2011;17(2):158–66.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Dschietzig T, Brecht A, Bartsch C, Baumann G, Stangl K, Alexiou K. Relaxin improves TNF-alpha-induced endothelial dysfunction: the role of glucocorticoid receptor and phosphatidylinositol 3-kinase signalling. Cardiovasc Res. 2012;95(1):97–107.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Egan CT, Herrick-Davis K, Teitler M. Creation of a constitutively activated state of the 5-Hydroxytryptamine2A receptor by site-directed mutagenesis: inverse agonist activity of antipsychotic drugs. J Pharmacol Exp Ther. 1998;286(1):85–90.PubMedPubMedCentralGoogle Scholar
  84. Eigenbrot C, Randal M, Quan C, Burnier J, O’Connell L, Rinderknecht E, et al. X-ray structure of human relaxin at 1.5 A. Comparison to insulin and implications for receptor binding determinants. J Mol Biol. 1991;221(1):15–21.PubMedPubMedCentralGoogle Scholar
  85. Erikson MS, Unemori EN. Relaxin clinical trials in systemic sclerosis. In: Tregear GW, Ivell R, Bathgate RA, Wade JD, editors. Relaxin 2000: proceedings of the third international conference on relaxin and related peptides. Amsterdam: Kluwer; 2001. p. 373–82.Google Scholar
  86. Eschenhagen T, Mende U, Nose M, Schmitz W, Scholz H, Haverich A, et al. Increased messenger RNA level of the inhibitory G protein alpha subunit Gi alpha-2 in human end-stage heart failure. Circ Res. 1992;70(4):688–96.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Familari M, Vu D, Parry LJ. Regulation of Rxfp2 (Lgr8) expression in the mouse fetal kidney by the transcription factor Pod1 (Tcf 21). Ann N Y Acad Sci. 2009;1160:317–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Fan YH, Dong H, Pan Q, Cao YJ, Li H, Wang HC. Notch signaling may negatively regulate neonatal rat cardiac fibroblast-myofibroblast transformation. Physiol Res/Acad Sci Bohemoslovaca. 2011;60(5):739–48.Google Scholar
  89. Feng S, Agoulnik IU, Bogatcheva NV, Kamat AA, Kwabi-Addo B, Li R, et al. Relaxin promotes prostate cancer progression. Clin Cancer Res. 2007;13(6):1695–702.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Feng S, Agoulnik IU, Truong A, Li Z, Creighton CJ, Kaftanovskaya EM, et al. Suppression of relaxin receptor RXFP1 decreases prostate cancer growth and metastasis. Endocr Relat Cancer. 2010;17(4):1021–33.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ferlin A, Pepe A, Gianesello L, Garolla A, Feng S, Giannini S, et al. Mutations in the insulin-like factor 3 receptor are associated with osteoporosis. J Bone Miner Res. 2008;23(5):683–93.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ferlin A, Pepe A, Gianesello L, Garolla A, Feng S, Facciolli A, et al. New roles for INSL3 in adults. Ann N Y Acad Sci. 2009;1160:215–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ferlin A, Pepe A, Facciolli A, Gianesello L, Foresta C. Relaxin stimulates osteoclast differentiation and activation. Bone. 2010;46(2):504–13.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ferlin A, Menegazzo M, Gianesello L, Selice R, Foresta C. Effect of relaxin on human sperm functions and fertilizing ability. J Androl. 2012;33:474–82.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ferlin A, Selice R, Carraro U, Foresta C. Testicular function and bone metabolism – beyond testosterone. Nat Rev Endocrinol. 2013;9(9):548–54.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Filonzi M, Cardoso LC, Pimenta MT, Queiroz DB, Avellar MC, Porto CS, et al. Relaxin family peptide receptors Rxfp1 and Rxfp2: mapping of the mRNA and protein distribution in the reproductive tract of the male rat. Reprod Biol Endocrinol. 2007;5:29.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Fisher C, MacLean M, Morecroft I, Seed A, Johnston F, Hillier C, et al. Is the pregnancy hormone relaxin also a vasodilator peptide secreted by the heart? Circulation. 2002;106(3):292–5.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Fisher C, Berry C, Blue L, Morton JJ, McMurray J. N-terminal pro B type natriuretic peptide, but not the new putative cardiac hormone relaxin, predicts prognosis in patients with chronic heart failure. Heart. 2003;89(8):879–81.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Foresta C, Bettella A, Vinanzi C, Dabrilli P, Meriggiola MC, Garolla A, et al. A novel circulating hormone of testis origin in humans. J Clin Endocrinol Metab. 2004;89(12):5952–8.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Fu P, Shen PJ, Zhao CX, Scott DJ, Samuel CS, Wade JD, et al. Leucine-rich repeat-containing G-protein-coupled receptor 8 in mature glomeruli of developing and adult rat kidney and inhibition by insulin-like peptide-3 of glomerular cell proliferation. J Endocrinol. 2006;189(2):397–408.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Funato N, Ohyama K, Kuroda T, Nakamura M. Basic helix-loop-helix transcription factor epicardin/capsulin/Pod-1 suppresses differentiation by negative regulation of transcription. J Biol Chem. 2003;278(9):7486–93.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Gambineri A, Patton L, De Iasio R, Palladoro F, Pagotto U, Pasquali R. Insulin-like factor 3: a new circulating hormone related to luteinizing hormone-dependent ovarian hyperandrogenism in the polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92(6):2066–73.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Gandley RE, Conrad KP, McLaughlin MK. Endothelin and nitric oxide mediate reduced myogenic reactivity of small renal arteries from pregnant rats. Am J Physiol Regul Integr Comp Physiol. 2001;280(1):R1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Garber SL, Mirochnik Y, Brecklin CS, Unemori EN, Singh AK, Slobodskoy L, et al. Relaxin decreases renal interstitial fibrosis and slows progression of renal disease. Kidney Int. 2001;59(3):876–82.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiology. 2008;108(4):735–48.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Glister C, Satchell L, Bathgate RA, Wade JD, Dai Y, Ivell R, et al. Functional link between bone morphogenetic proteins and insulin-like peptide 3 signaling in modulating ovarian androgen production. Proc Natl Acad Sci U S A. 2013;110(15):E1426–35.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Glogowska A, Kunanuvat U, Stetefeld J, Patel TR, Thanasupawat T, Krcek J, et al. C1q-tumour necrosis factor-related protein 8 (CTRP8) is a novel interaction partner of relaxin receptor RXFP1 in human brain cancer cells. J Pathol. 2013;231(4):466–79.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Gooi JH, Richardson ML, Jelinic M, Girling JE, Wlodek ME, Tare M, et al. Enhanced uterine artery stiffness in aged pregnant relaxin mutant mice is reversed with exogenous relaxin treatment. Biol Reprod. 2013;89(1):18.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Gorlov IP, Kamat A, Bogatcheva NV, Jones E, Lamb DJ, Truong A, et al. Mutations of the GREAT gene cause cryptorchidism. Hum Mol Genet. 2002;11(19):2309–18.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Haley J, Hudson P, Scanlon D, John M, Cronk M, Shine J, et al. Porcine relaxin: molecular cloning and cDNA structure. DNA. 1982;1(2):155–62.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Halls ML, Cooper DM. Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, beta-arrestin 2, PDE4D3 complex. EMBO J. 2010;29(16):2772–87.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Halls ML, Bond CP, Sudo S, Kumagai J, Ferraro T, Layfield S, et al. Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8). J Pharmacol Exp Ther. 2005;313(2):677–87.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Halls ML, Bathgate RA, Summers RJ. Relaxin family peptide receptors RXFP1 and RXFP2 modulate cAMP signaling by distinct mechanisms. Mol Pharmacol. 2006;70(1):214–26.PubMedPubMedCentralGoogle Scholar
  114. Halls ML, van der Westhuizen ET, Bathgate RA, Summers RJ. Relaxin family peptide receptors – former orphans reunite with their parent ligands to activate multiple signalling pathways. Br J Pharmacol. 2007a;150(6):677–91.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Halls ML, Bathgate RA, Summers RJ. Comparison of signaling pathways activated by the relaxin family peptide receptors, RXFP1 and RXFP2, using reporter genes. J Pharmacol Exp Ther. 2007b;320(1):281–90.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Halls ML, van der Westhuizen ET, Wade JD, Evans BA, Bathgate RA, Summers RJ. Relaxin family peptide receptor (RXFP1) coupling to G(alpha)i3 involves the C-terminal Arg752 and localization within membrane raft microdomains. Mol Pharmacol. 2009a;75(2):415–28.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Halls ML, Hewitson TD, Moore XL, Du XJ, Bathgate RA, Summers RJ. Relaxin activates multiple cAMP signaling pathway profiles in different target cells. Ann N Y Acad Sci. 2009b;1160:108–11.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Halls ML, Bathgate RA, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev. 2015;67(2):389–440.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Hartley BJ, Scott DJ, Callander GE, Wilkinson TN, Ganella DE, Kong CK, et al. Resolving the unconventional mechanisms underlying RXFP1 and RXFP2 receptor function. Ann N Y Acad Sci. 2009;1160:67–73.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Heeg MHJ, Koziolek MJ, Vasko R, Schaefer L, Sharma K, Muller GA, et al. The antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of the Smad2 pathway. Kidney Int. 2005;68(1):96–109.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Heng K, Ivell R, Wagaarachchi P, Anand-Ivell R. Relaxin signalling in primary cultures of human myometrial cells. Mol Hum Reprod. 2008;14(10):603–11.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Herrick-Davis K, Egan CT, Teitler M. Activating mutations of the serotonin 5-HT2C receptor. J Neurochem. 1997;69(3):1138–44.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Hisaw FL. Experimental relaxation of the pubic ligament of the guinea pig. Proc Soc Exp Biol Med. 1926;23:661–3.CrossRefGoogle Scholar
  124. Hombach-Klonisch S, Hoang-Vu C, Kehlen A, Hinze R, Holzhausen HJ, Weber E, et al. INSL-3 is expressed in human hyperplastic and neoplastic thyrocytes. Int J Oncol. 2003;22(5):993–1001.PubMedPubMedCentralGoogle Scholar
  125. Hombach-Klonisch S, Bialek J, Trojanowicz B, Weber E, Holzhausen H-J, Silvertown JD, et al. Relaxin enhances the oncogenic potential of human thyroid carcinoma cells. Am J Pathol. 2006;169(2):617–32.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Hombach-Klonisch S, Bialek J, Radestock Y, Truong A, Agoulnik AI, Fiebig B, et al. INSL3 has tumor-promoting activity in thyroid cancer. Int J Cancer. 2010;127(3):521–31.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Hopkins EJ, Layfield S, Ferraro T, Bathgate RA, Gooley PR. The NMR solution structure of the relaxin (RXFP1) receptor lipoprotein receptor class A module and identification of key residues in the N-terminal region of the module that mediate receptor activation. J Biol Chem. 2007;282(6):4172–84.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Horton JS, Yamamoto SY, Bryant-Greenwood GD. Relaxin modulates proinflammatory cytokine secretion from human decidual macrophages. Biol Reprod. 2011;85(4):788–97.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Hossain MA, Rosengren KJ, Haugaard-Jonsson LM, Zhang S, Layfield S, Ferraro T, et al. The A-chain of human relaxin family peptides has distinct roles in the binding and activation of the different relaxin family peptide receptors. J Biol Chem. 2008;283(25):17287–97.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Hossain MA, Rosengren KJ, Samuel CS, Shabanpoor F, Chan LJ, Bathgate RA, et al. The minimal active structure of human relaxin-2. J Biol Chem. 2011;286(43):37555–65.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Hsu SYT. New insights into the evolution of the relaxin – LGR signaling system. Trends Endocrinol Metab. 2003;14(7):303–9.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Hsu SY, Kudo M, Chen T, Nakabayashi K, Bhalla A, van der Spek PJ, et al. The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol Endocrinol. 2000;14(8):1257–71.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, et al. Activation of orphan receptors by the hormone relaxin. Science. 2002;295(5555):671–4.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Hu X, Myhr C, Huang Z, Xiao J, Barnaeva E, Ho BA, et al. Structural insights into the activation of human relaxin family peptide receptor 1 by small-molecule agonists. Biochemistry. 2016;55(12):1772–83.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Huang Z, Myhr C, Bathgate RA, Ho BA, Bueno A, Hu X, et al. Activation of relaxin family receptor 1 from different mammalian species by relaxin peptide and small-molecule agonist ML290. Front Endocrinol. 2015;6:128.CrossRefGoogle Scholar
  136. Hudson P, Haley J, Cronk M, Shine J, Niall H. Molecular cloning and characterization of cDNA sequences coding for rat relaxin. Nature. 1981;291(5811):127–31.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Hudson P, Haley J, John M, Cronk M, Crawford R, Haralambidis J, et al. Structure of a genomic clone encoding biologically active human relaxin. Nature. 1983;301(5901):628–31.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Hudson P, John M, Crawford R, Haralambidis J, Scanlon D, Gorman J, et al. Relaxin gene expression in human ovaries and the predicted structure of a human preprorelaxin by analysis of cDNA clones. EMBO J. 1984;3(10):2333–9.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ivell R, Anand-Ivell R. Biology of insulin-like factor 3 in human reproduction. Hum Reprod Update. 2009;15(4):463–76.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Ivell R, Bathgate RA. Reproductive biology of the relaxin-like factor (RLF/INSL3). Biol Reprod. 2002;67(3):699–705.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Ivell R, Balvers M, Pohnke Y, Telgmann R, Bartsch O, Milde-Langosch K, et al. Immunoexpression of the relaxin receptor LGR7 in breast and uterine tissues of humans and primates. Reprod Biol Endocrinol. 2003;1:114.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Ivell R, Heng K, Anand-Ivell R. Insulin-like factor 3 and the HPG axis in the male. Front Endocrinol. 2014;5:6.CrossRefGoogle Scholar
  143. James R, Niall H, Kwok S, Bryand-Greenwood G. Primary structure of porcine relaxin: homology with insulin and related growth factors. Nature. 1977;267(5611):544–6.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Jarrett Jd, Ballejo G, Saleem TH, Tsibris JC, Spellacy WN. The effect of prolactin and relaxin on insulin binding by adipocytes from pregnant women. Am J Obstet Gynecol. 1984;149(3):250–5.CrossRefGoogle Scholar
  145. Jelinic M, Leo CH, Post Uiterweer ED, Sandow SL, Gooi JH, Wlodek ME, et al. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J. 2014;28(1):275–87.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Jeyabalan A, Novak J, Danielson LA, Kerchner LJ, Opett SL, Conrad KP. Essential role for vascular gelatinase activity in relaxin-induced renal vasodilation, hyperfiltration, and reduced myogenic reactivity of small arteries. Circ Res. 2003;93(12):1249–57.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Jeyabalan A, Kerchner LJ, Fisher MC, McGuane JT, Doty KD, Conrad KP. Matrix metalloproteinase-2 activity, protein, mRNA, and tissue inhibitors in small arteries from pregnant and relaxin-treated nonpregnant rats. J Appl Physiol. 2006;100(6):1955–63.PubMedPubMedCentralCrossRefGoogle Scholar
  148. John MJ, Borjesson BW, Walsh JR, Niall HD. Limited sequence homology between porcine and rat relaxins: implications for physiological studies. Endocrinology. 1981;108(2):726–9.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Johnson MR, Abdalla H, Allman AC, Wren ME, Kirkland A, Lightman SL. Relaxin levels in ovum donation pregnancies. Fertil Steril. 1991;56(1):59–61.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Johnson MR, Brooks AA, Steer PJ. The role of relaxin in the pregnancy associated reduction in plasma osmolality. Hum Reprod. 1996;11(5):1105–8.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Johnston SE, Gratten J, Berenos C, Pilkington JG, Clutton-Brock TH, Pemberton JM, et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature. 2013;502(7469):93–5.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE. AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther. 2008;120(3):292–316.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Kakouris H, Eddie LW, Summers RJ. Cardiac effects of relaxin in rats. Lancet. 1992;339(8801):1076–8.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Kamat AA, Feng S, Bogatcheva NV, Truong A, Bishop CE, Agoulnik AI. Genetic targeting of relaxin and insulin-like factor 3 receptors in mice. Endocrinology. 2004;145(10):4712–20.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Kamat AA, Feng S, Agoulnik IU, Kheradmand F, Bogatcheva NV, Coffey D, et al. The role of relaxin in endometrial cancer. Cancer Biol Ther. 2006;5(1):71–7.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, et al. Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl Acad Sci U S A. 2004;101(19):7323–8.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Kern A, Agoulnik AI, Bryant-Greenwood GD. The low-density lipoprotein class A module of the relaxin receptor (leucine-rich repeat containing G-protein coupled receptor 7): its role in signaling and trafficking to the cell membrane. Endocrinology. 2007;148(3):1181–94.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Kern A, Hubbard D, Amano A, Bryant-Greenwood GD. Cloning, expression, and functional characterization of relaxin receptor (leucine-rich repeat-containing g protein-coupled receptor 7) splice variants from human fetal membranes. Endocrinology. 2008;149(3):1277–94.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Khanna D, Clements PJ, Furst DE, Korn JH, Ellman M, Rothfield N, et al. Recombinant human relaxin in the treatment of systemic sclerosis with diffuse cutaneous involvement: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2009;60(4):1102–11.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Kjelsberg MA, Cotecchia S, Ostrowski J, Caron MG, Lefkowitz RJ. Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J Biol Chem. 1992;267(3):1430–3.PubMedPubMedCentralGoogle Scholar
  161. Klonisch T, Muller-Huesmann H, Riedel M, Kehlen A, Bialek J, Radestock Y, et al. INSL3 in the benign hyperplastic and neoplastic human prostate gland. Int J Oncol. 2005;27(2):307–15.PubMedPubMedCentralGoogle Scholar
  162. Kohsaka T, Min G, Lukas G, Trupin S, Campbell ET, Sherwood OD. Identification of specific relaxin-binding cells in the human female. Biol Reprod. 1998;59(4):991–9.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Kompa AR, Samuel CS, Summers RJ. Inotropic responses to human gene 2 (B29) relaxin in a rat model of myocardial infarction (MI): effect of pertussis toxin. Br J Pharmacol. 2002;137(5):710–8.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Kong RC, Shilling PJ, Lobb DK, Gooley PR, Bathgate RA. Membrane receptors: structure and function of the relaxin family peptide receptors. Mol Cell Endocrinol. 2010;320(1–2):1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Kong RC, Petrie EJ, Mohanty B, Ling J, Lee JC, Gooley PR, et al. The relaxin receptor (RXFP1) utilises hydrophobic moieties on a signalling surface of its N-terminal low density lipoprotein class A module to mediate receptor activation. J Biol Chem. 2013;288:28138–51.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Krajnc-Franken MA, van Disseldorp AJ, Koenders JE, Mosselman S, van Duin M, Gossen JA. Impaired nipple development and parturition in LGR7 knockout mice. Mol Cell Biol. 2004;24(2):687–96.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, et al. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem. 2002;277(35):31283–6.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Kuznetsova L, Plesneva S, Derjabina N, Omeljaniuk E, Pertseva M. On the mechanism of relaxin action: the involvement of adenylyl cyclase signalling system. Regul Pept. 1999;80(1–2):33–9.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Lee AB, Hwang JJ, Haab LM, Fields PA, Sherwood OD. Monoclonal antibodies specific for rat relaxin. VI. Passive immunization with monoclonal antibodies throughout the second half of pregnancy disrupts histological changes associated with cervical softening at parturition in rats. Endocrinology. 1992;130(4):2386–91.PubMedPubMedCentralGoogle Scholar
  170. Lekgabe ED, Kiriazis H, Zhao C, Xu Q, Moore XL, Su Y, et al. Relaxin reverses cardiac and renal fibrosis in spontaneously hypertensive rats. Hypertension. 2005;46(2):412–8.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Li Y, Brookes ZL, Kaufman S. Acute and chronic effects of relaxin on vasoactivity, myogenic reactivity and compliance of the rat mesenteric arterial and venous vasculature. Regul Pept. 2005;132(1–3):41–6.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Longo M, Jain V, Vedernikov YP, Garfield RE, Saade GR. Effects of recombinant human relaxin on pregnant rat uterine artery and myometrium in vitro. Am J Obstet Gynecol 2003;188(6):1468–1474; discussion 74–6.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Ma S, Roozendaal B, Burazin TC, Tregear GW, McGaugh JL, Gundlach AL. Relaxin receptor activation in the basolateral amygdala impairs memory consolidation. Eur J Neurosci. 2005;22(8):2117–22.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Ma JF, Liu L, Yang WJ, Zang LN, Xi YM. RNAi-mediated knockdown of relaxin decreases in vitro proliferation and invasiveness of osteosarcoma MG-63 cells by inhibition of MMP-9. Eur Rev Med Pharmacol Sci. 2013a;17(8):1102–9.PubMedPubMedCentralGoogle Scholar
  175. Ma JF, Von Kalle M, Plautz Q, MX F, Singh L, Wang L. Relaxin promotes in vitro tumour growth, invasion and angiogenesis of human Saos-2 osteosarcoma cells by AKT/VEGF pathway. Eur Rev Med Pharmacol Sci. 2013b;17(10):1345–50.PubMedPubMedCentralGoogle Scholar
  176. Masini E, Bani D, Bello MG, Bigazzi M, Mannaioni PF, Sacchi TB. Relaxin counteracts myocardial damage induced by ischemia-reperfusion in isolated guinea pig hearts: evidence for an involvement of nitric oxide. Endocrinology. 1997;138(11):4713–20.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Massicotte G, Parent A, St-Louis J. Blunted responses to vasoconstrictors in mesenteric vasculature but not in portal vein of spontaneously hypertensive rats treated with relaxin. Proc Soc Exp Biol Med. 1989;190(3):254–9.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Mathieu MN, Wade JD, Tregear GW, Bond CP, Summers RJ, Catimel B, et al. Synthesis, conformational studies and biological activity of N(alpha)- mono-biotinylated rat relaxin. J Pept Res. 2001;57(5):374–82.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res. 1998;83(12):1182–91.PubMedPubMedCentralCrossRefGoogle Scholar
  180. McDonald GA, Sarkar P, Rennke H, Unemori E, Kalluri R, Sukhatme VP. Relaxin increases ubiquitin-dependent degradation of fibronectin in vitro and ameliorates renal fibrosis in vivo. Am J Physiol Ren Physiol. 2003;285(1):F59–67.CrossRefGoogle Scholar
  181. McGowan BM, Minnion JS, Murphy KG, White NE, Roy D, Stanley SA, et al. Central and peripheral administration of human relaxin-2 to adult male rats inhibits food intake. Diabetes Obes Metab. 2010;12(12):1090–6.PubMedPubMedCentralCrossRefGoogle Scholar
  182. McGuane JT, Debrah JE, Sautina L, Jarajapu YP, Novak J, Rubin JP, et al. Relaxin induces rapid dilation of rodent small renal and human subcutaneous arteries via PI3 kinase and nitric oxide. Endocrinology. 2011;152(7):2786–96.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Millar LK, Reiny R, Yamamoto SY, Okazaki K, Webster L, Bryant-Greenwood GD. Relaxin causes proliferation of human amniotic epithelium by stimulation of insulin-like growth factor-II. Am J Obstet Gynecol. 2003;188(1):234–41.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Mookerjee I, Hewitson TD, Halls ML, Summers RJ, Mathai ML, Bathgate RA, et al. Relaxin inhibits renal myofibroblast differentiation via RXFP1, the nitric oxide pathway, and Smad2. FASEB J. 2009;23(4):1219–29.PubMedPubMedCentralCrossRefGoogle Scholar
  185. Moore XL, Tan SL, Lo CY, Fang L, Su YD, Gao XM, et al. Relaxin antagonizes hypertrophy and apoptosis in neonatal rat cardiomyocytes. Endocrinology. 2007;148:1582–9.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Nef S, Parada LF. Cryptorchidism in mice mutant for INSL3. Nat Genet. 1999;22(3):295–9.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Nguyen BT, Dessauer CW. Relaxin stimulates protein kinase C z translocation: requirement for cyclic adenosine 3′,5′-monophosphate production. Mol Endocrinol. 2005;19(4):1012–23.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Nguyen BT, Yang L, Sanborn BM, Dessauer CW. Phosphoinositide 3-kinase activity is required for biphasic stimulation of cyclic adenosine 3′,5′-monophosphate by relaxin. Mol Endocrinol. 2003;17(6):1075–84.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Nistri S, Bani D. Relaxin receptors and nitric oxide synthases: search for the missing link. Reprod Biol Endocrinol. 2003;1(1):5.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Novak J, Danielson LA, Kerchner LJ, Sherwood OD, Ramirez RJ, Moalli PA, et al. Relaxin is essential for renal vasodilation during pregnancy in conscious rats. J Clin Invest. 2001;107(11):1469–75.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Novak J, Ramirez RJ, Gandley RE, Sherwood OD, Conrad KP. Myogenic reactivity is reduced in small renal arteries isolated from relaxin-treated rats. Am J Phys Regul Integr Comp Phys. 2002;283(2):R349–55.Google Scholar
  192. Novak J, Parry LJ, Matthews JE, Kerchner LJ, Indovina K, Hanley-Yanez K, et al. Evidence for local relaxin ligand-receptor expression and function in arteries. FASEB J. 2006;20(13):2352–62.PubMedPubMedCentralCrossRefGoogle Scholar
  193. O’Byrne EM, Carriere BT, Sorensen L, Segaloff A, Schwabe C, Steinetz BG. Plasma immunoreactive relaxin levels in pregnant and nonpregnant women. J Clin Endocrinol Metab. 1978;47(5):1106–10.PubMedPubMedCentralCrossRefGoogle Scholar
  194. Olefsky JM, Saekow M, Kroc RL. Potentiation of insulin binding and insulin action by purified porcine relaxin. Ann N Y Acad Sci. 1982;380(200):200–16.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Osheroff PL, Ho WH. Expression of relaxin mRNA and relaxin receptors in postnatal and adult rat brains and hearts. Localization and developmental patterns. J Biol Chem. 1993;268(20):15193–9.PubMedPubMedCentralGoogle Scholar
  196. Osheroff PL, Cronin MJ, Lofgren JA. Relaxin binding in the rat heart atrium. Proc Natl Acad Sci U S A. 1992;89:2384–8.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Overbeek PA, Gorlov IP, Sutherland RW, Houston JB, Harrison WR, Boettger-Tong HL, et al. A transgenic insertion causing cryptorchidism in mice. Genesis. 2001;30(1):26–35.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Palejwala S, Stein D, Wojtczuk A, Weiss G, Goldsmith LT. Demonstration of a relaxin receptor and relaxin-stimulated tyrosine phosphorylation in human lower uterine segment fibroblasts. Endocrinology. 1998;139(3):1208–12.PubMedPubMedCentralCrossRefGoogle Scholar
  199. Pan HZ, Dong AB, Wang L, Tan SS, Yang Q, Tong XY, et al. Significance of relaxin-2 expression in hepatocellular carcinoma: relation with clinicopathological parameters. Eur Rev Med Pharmacol Sci. 2013;17(8):1095–101.PubMedPubMedCentralGoogle Scholar
  200. Parikh A, Patel D, McTiernan CF, Xiang W, Haney J, Yang L, et al. Relaxin suppresses atrial fibrillation by reversing fibrosis and myocyte hypertrophy and increasing conduction velocity and sodium current in spontaneously hypertensive rat hearts. Circ Res. 2013;113(3):313–21.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Park JI, Semyonov J, Yi W, Chang CL, Hsu SY. Regulation of receptor signaling by relaxin A chain motifs: derivation of pan-specific and LGR7-specific human relaxin analogs. J Biol Chem. 2008;283(46):32099–109.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Pathirana IN, Kawate N, Bullesbach EE, Takahashi M, Hatoya S, Inaba T, et al. Insulin-like peptide 3 stimulates testosterone secretion in mouse Leydig cells via cAMP pathway. Regul Pept. 2012;178(1–3):102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Pepe A, Ferlin A, Gianesello L, Facciolli A, Agoulnik AI, Foresta C. INSL3 plays a role in the balance between bone formation and resorption. Ann N Y Acad Sci. 2009;1160:219–20.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Perna AM, Masini E, Nistri S, Briganti V, Chiappini L, Stefano P, et al. Novel drug development opportunity for relaxin in acute myocardial infarction: evidences from a swine model. FASEB J. 2005;19(11):1525–7.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Petersen LK, Svane D, Uldbjerg N, Forman A. Effects of human relaxin on isolated rat and human myometrium and uteroplacental arteries. Obstet Gynecol. 1991;78(5):757–62.PubMedPubMedCentralGoogle Scholar
  206. Piedras-Renteria ES, Sherwood OD, Best PM. Effects of relaxin on rat atrial myocytes. II. Increased calcium influx derived from action potential prolongation. Am J Phys. 1997a;272(4 Pt 2):H1798–803.Google Scholar
  207. Piedras-Renteria ES, Sherwood OD, Best PM. Effects of relaxin on rat atrial myocytes. I. Inhibition of I(to) via PKA-dependent phosphorylation. Am J Phys. 1997b;272(4 Pt 2):H1791–7.Google Scholar
  208. Pietila EM, Tuusa JT, Apaja PM, Aatsinki JT, Hakalahti AE, Rajaniemi HJ, et al. Inefficient maturation of the rat luteinizing hormone receptor: a putative way to regulate receptor numbers at the cell surface. J Biol Chem. 2005;280(28):26622–9.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Pini A, Shemesh R, Samuel CS, Bathgate RA, Zauberman A, Hermesh C, et al. Prevention of bleomycin-induced pulmonary fibrosis by a novel antifibrotic peptide with relaxin-like activity. J Pharmacol Exp Ther. 2010;335(3):589–99.PubMedPubMedCentralCrossRefGoogle Scholar
  210. Pusch W, Balvers M, Ivell R. Molecular cloning and expression of the relaxin-like factor from the mouse testis. Endocrinology. 1996;137(7):3009–13.PubMedPubMedCentralCrossRefGoogle Scholar
  211. Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, et al. The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development. 1999;126(24):5771–83.PubMedPubMedCentralGoogle Scholar
  212. Quintana J, Hipkin RW, Ascoli M. A polyclonal antibody to a synthetic peptide derived from the rat follicle-stimulating hormone receptor reveals the recombinant receptor as a 74-kilodalton protein. Endocrinology. 1993;133(5):2098–104.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Radestock Y, Hoang-Vu C, Hombach-Klonisch S. Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells. Breast Cancer Res. 2008;10(4):R71.PubMedPubMedCentralCrossRefGoogle Scholar
  214. Ren Q, Kurose H, Lefkowitz RJ, Cotecchia S. Constitutively active mutants of the alpha 2-adrenergic receptor. J Biol Chem. 1993;268(22):16483–7.PubMedPubMedCentralGoogle Scholar
  215. Ren P, Yu ZT, Xiu L, Wang M, Liu HM. Elevated serum levels of human relaxin-2 in patients with esophageal squamous cell carcinoma. World J Gastroenterol. 2013;19(15):2412–8.PubMedPubMedCentralCrossRefGoogle Scholar
  216. Rosengren KJ, Zhang S, Lin F, Daly NL, Scott DJ, Hughes RA, et al. Solution structure and characterization of the LGR8 receptor binding surface of insulin-like peptide 3. J Biol Chem. 2006;281(38):28287–95.PubMedPubMedCentralCrossRefGoogle Scholar
  217. Sadana R, Dessauer CW. Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals. 2009;17(1):5–22.PubMedPubMedCentralCrossRefGoogle Scholar
  218. Samuel CS, Zhao C, Bathgate RA, Bond CP, Burton MD, Parry LJ, et al. Relaxin deficiency in mice is associated with an age-related progression of pulmonary fibrosis. FASEB J. 2003;17(1):121–3.PubMedPubMedCentralCrossRefGoogle Scholar
  219. Samuel CS, Unemori EN, Mookerjee I, Bathgate RA, Layfield SL, Mak J, et al. Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology. 2004a;145(9):4125–33.PubMedPubMedCentralCrossRefGoogle Scholar
  220. Samuel CS, Zhao C, Bond CP, Hewitson TD, Amento EP, Summers RJ. Relaxin-1-deficient mice develop an age-related progression of renal fibrosis. Kidney Int. 2004b;65(6):2054–64.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Samuel CS, Zhao C, Bathgate RA, Du XJ, Summers RJ, Amento EP, et al. The relaxin gene-knockout mouse: a model of progressive fibrosis. Ann N Y Acad Sci. 2005;1041:173–81.PubMedPubMedCentralCrossRefGoogle Scholar
  222. Samuel CS, Royce SG, Burton MD, Zhao C, Tregear GW, Tang ML. Relaxin plays an important role in the regulation of airway structure and function. Endocrinology. 2007;148(9):4259–66.PubMedPubMedCentralCrossRefGoogle Scholar
  223. Samuel CS, Hewitson TD, Zhang Y, Kelly DJ. Relaxin ameliorates fibrosis in experimental diabetic cardiomyopathy. Endocrinology. 2008;149(7):3286–93.PubMedPubMedCentralCrossRefGoogle Scholar
  224. Samuel CS, Cendrawan S, Gao XM, Ming Z, Zhao C, Kiriazis H, et al. Relaxin remodels fibrotic healing following myocardial infarction. Lab Investig. 2011;91(5):675–90.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Sanborn BM, Kuo HS, Weisbrodt NW, Sherwood OD. The interaction of relaxin with the rat uterus. I. Effect on cyclic nucleotide levels and spontaneous contractile activity. Endocrinology. 1980;106(4):1210–5.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Sarwar M, Samuel CS, Bathgate RA, Stewart DR, Summers RJ. Serelaxin-mediated signal transduction in human vascular cells: bell-shaped concentration-response curves reflect differential coupling to G proteins. Br J Pharmacol. 2015;172:1005–19.PubMedPubMedCentralCrossRefGoogle Scholar
  227. Sarwar M, Samuel CS, Bathgate RA, Stewart DR, Summers RJ. Enhanced serelaxin signalling in co-cultures of human primary endothelial and smooth muscle cells. Br J Pharmacol. 2016;173:484–96.PubMedPubMedCentralCrossRefGoogle Scholar
  228. Savoia C, Ebrahimian T, He Y, Gratton JP, Schiffrin EL, Touyz RM. Angiotensin II/AT2 receptor-induced vasodilation in stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-dependent protein kinase. J Hypertens. 2006;24(12):2417–22.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Schondorf T, Lubben G, Hoopmann M, Borchert M, Forst T, Hohberg C, et al. Relaxin expression correlates significantly with serum fibrinogen variation in response to antidiabetic treatment in women with type 2 diabetes mellitus. Gynecol Endocrinol. 2007;23(6):356–60.PubMedPubMedCentralCrossRefGoogle Scholar
  230. Schwabe C, Bullesbach EE. Relaxin: structures, functions, promises, and nonevolution. FASEB J. 1994;8:1152–60.PubMedPubMedCentralCrossRefGoogle Scholar
  231. Schwabe C, McDonald JK. Primary structure of the B-chain of porcine relaxin. Biochem Biophys Res Commun. 1977;75(2):503–10.PubMedPubMedCentralCrossRefGoogle Scholar
  232. Scott DJ, Layfield S, Riesewijk A, Morita H, Tregear GW, Bathgate RA. Characterization of the mouse and rat relaxin receptors. Ann N Y Acad Sci. 2005a;1041:8–12.PubMedPubMedCentralCrossRefGoogle Scholar
  233. Scott DJ, Tregear GW, Bathgate RA. LGR7-truncate is a splice variant of the relaxin receptor LGR7 and is a relaxin antagonist in vitro. Ann N Y Acad Sci. 2005b;1041:22–6.PubMedPubMedCentralCrossRefGoogle Scholar
  234. Scott DJ, Fu P, Shen PJ, Gundlach A, Layfield S, Riesewijk A, et al. Characterization of the rat INSL3 receptor. Ann N Y Acad Sci. 2005c;1041:13–6.PubMedPubMedCentralCrossRefGoogle Scholar
  235. Scott DJ, Layfield S, Yan Y, Sudo S, Hsueh AJ, Tregear GW, et al. Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique LDLa modules. J Biol Chem. 2006;281:34942–54.PubMedPubMedCentralCrossRefGoogle Scholar
  236. Scott DJ, Wilkinson TN, Zhang S, Ferraro T, Wade JD, Tregear GW, et al. Defining the LGR8 residues involved in binding insulin-like peptide 3. Mol Endocrinol. 2007;21(7):1699–712.PubMedPubMedCentralCrossRefGoogle Scholar
  237. Scott DJ, Rosengren KJ, Bathgate RA. The different ligand-binding modes of relaxin family peptide receptors RXFP1 and RXFP2. Mol Endocrinol. 2012;26(11):1896–906.PubMedPubMedCentralCrossRefGoogle Scholar
  238. Sedaghat K, Shen PJ, Finkelstein DI, Henderson JM, Gundlach AL. Leucine-rich repeat-containing G-protein-coupled receptor 8 in the rat brain: enrichment in thalamic neurons and their efferent projections. Neuroscience. 2008;156(2):319–33.PubMedPubMedCentralCrossRefGoogle Scholar
  239. Seibold JR, Korn JH, Simms R, Clements PJ, Moreland LW, Mayes MD, et al. Recombinant human relaxin in the treatment of scleroderma. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2000;132(11):871–9.PubMedPubMedCentralCrossRefGoogle Scholar
  240. Sethi A, Bruell S, Patil N, Hossain MA, Scott DJ, Petrie EJ, et al. The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1. Nat Commun. 2016;7:11344.PubMedPubMedCentralCrossRefGoogle Scholar
  241. Shabanpoor F, Bathgate RA, Hossain MA, Giannakis E, Wade JD, Hughes RA. Design, synthesis and pharmacological evaluation of cyclic mimetics of the insulin-like peptide 3 (INSL3) B-chain. J Pept Sci. 2007;13(2):113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  242. Shabanpoor F, Hughes RA, Zhang S, Bathgate RA, Layfield S, Hossain MA, et al. Effect of helix-promoting strategies on the biological activity of novel analogues of the B-chain of INSL3. Amino Acids. 2010;38(1):121–31.PubMedPubMedCentralCrossRefGoogle Scholar
  243. Shabanpoor F, Zhang S, Hughes RA, Hossain MA, Layfield S, Ferraro T, et al. Design and development of analogues of dimers of insulin-like peptide 3 B-chain as high-affinity antagonists of the RXFP2 receptor. Biopolymers. 2011;96(1):81–7.PubMedPubMedCentralCrossRefGoogle Scholar
  244. Shemesh R, Toporik A, Levine Z, Hecht I, Rotman G, Wool A, et al. Discovery and validation of novel peptide agonists for G-protein-coupled receptors. J Biol Chem. 2008;283(50):34643–9.PubMedPubMedCentralCrossRefGoogle Scholar
  245. Shemesh R, Hermesh C, Toporik A, Levine Z, Novik A, Wool A, et al. Activation of relaxin-related receptors by short, linear peptides derived from a collagen-containing precursor. Ann N Y Acad Sci. 2009;1160:78–86.PubMedPubMedCentralCrossRefGoogle Scholar
  246. Shen PJ, Fu P, Phelan KD, Scott DJ, Layfield S, Tregear GW, et al. Restricted expression of LGR8 in intralaminar thalamic nuclei of rat brain suggests a role in sensorimotor systems. Ann N Y Acad Sci. 2005;1041:510–5.PubMedPubMedCentralCrossRefGoogle Scholar
  247. Sherwood OD. Relaxin. In: Knobil E, Neill JD, editors. The physiology of reproduction. 2nd ed. New York: Raven Press; 1994. p. 861–1009.Google Scholar
  248. Sherwood OD. Relaxin’s physiological roles and other diverse actions. Endocr Rev. 2004;25(2):205–34.PubMedPubMedCentralCrossRefGoogle Scholar
  249. Shpakov AO, Gur’yanov IA, Kuznetsova LA, Plesneva SA, Shpakova EA, Vlasov GP, et al. Studies of the molecular mechanisms of action of relaxin on the adenylyl cyclase signaling system using synthetic peptides derived from the LGR7 relaxin receptor. Neurosci Behav Physiol. 2007;37(7):705–14.PubMedPubMedCentralCrossRefGoogle Scholar
  250. Shymko RM, De Meyts P, Thomas R. Logical analysis of timing-dependent receptor signalling specificity: application to the insulin receptor metabolic and mitogenic signalling pathways. Biochem J. 1997;326(Pt 2):463–9.PubMedPubMedCentralCrossRefGoogle Scholar
  251. Silvertown JD, Summerlee AJ, Klonisch T. Relaxin-like peptides in cancer. Int J Cancer. 2003;107(4):513–9.PubMedPubMedCentralCrossRefGoogle Scholar
  252. Silvertown JD, Ng J, Sato T, Summerlee AJ, Medin JA. H2 relaxin overexpression increases in vivo prostate xenograft tumor growth and angiogenesis. Int J Cancer. 2006;118(1):62–73.PubMedPubMedCentralCrossRefGoogle Scholar
  253. Singh S, Bennett RG. Relaxin signaling activates peroxisome proliferator-activated receptor gamma. Mol Cell Endocrinol. 2010;315(1–2):239–45.PubMedPubMedCentralCrossRefGoogle Scholar
  254. Siragy HM, Carey RM. The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest. 1997;100(2):264–9.PubMedPubMedCentralCrossRefGoogle Scholar
  255. Smith MC, Danielson LA, Conrad KP, Davison JM. Influence of recombinant human relaxin on renal hemodynamics in healthy volunteers. J Am Soc Nephrol. 2006a;17(11):3192–7.PubMedPubMedCentralCrossRefGoogle Scholar
  256. Smith MC, Murdoch AP, Danielson LA, Conrad KP, Davison JM. Relaxin has a role in establishing a renal response in pregnancy. Fertil Steril. 2006b;86(1):253–5.PubMedPubMedCentralCrossRefGoogle Scholar
  257. Sokol RZ, Wang XS, Lechago J, Johnston PD, Swerdloff RS. Immunohistochemical localization of relaxin in human prostate. J Histochem Cytochem. 1989;37(8):1253–5.PubMedPubMedCentralCrossRefGoogle Scholar
  258. Spanel-Borowski K, Schafer I, Zimmermann S, Engel W, Adham IM. Increase in final stages of follicular atresia and premature decay of corpora lutea in Insl3-deficient mice. Mol Reprod Dev. 2001;58(3):281–6.PubMedPubMedCentralCrossRefGoogle Scholar
  259. St Louis J, Massicotte G. Chronic decrease of blood pressure by rat relaxin in spontaneously hypertensive rats. Life Sci. 1985;37(14):1351–7.PubMedPubMedCentralCrossRefGoogle Scholar
  260. Steinetz BG, Whitaker PG, Edwards JR. Maternal relaxin concentrations in diabetic pregnancy. Lancet. 1992;340(8822):752–5.PubMedPubMedCentralCrossRefGoogle Scholar
  261. Sudo S, Kumagai J, Nishi S, Layfield S, Ferraro T, Bathgate RA, et al. H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. J Biol Chem. 2003;278(10):7855–62.PubMedPubMedCentralCrossRefGoogle Scholar
  262. Summerlee AJ, Ramsey DG, Poterski RS. Neutralization of relaxin within the brain affects the timing of birth in rats. Endocrinology. 1998;139(2):479–84.PubMedPubMedCentralCrossRefGoogle Scholar
  263. Sunn N, Egli M, Burazin TC, Burns P, Colvill L, Davern P, et al. Circulating relaxin acts on subfornical organ neurons to stimulate water drinking in the rat. Proc Natl Acad Sci U S A. 2002;99(3):1701–6.PubMedPubMedCentralCrossRefGoogle Scholar
  264. Svendsen AM, Vrecl M, Ellis TM, Heding A, Kristensen JB, Wade JD, et al. Cooperative binding of insulin-like Peptide 3 to a dimeric relaxin family peptide receptor 2. Endocrinology. 2008a;149(3):1113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  265. Svendsen AM, Zalesko A, Konig J, Vrecl M, Heding A, Kristensen JB, et al. Negative cooperativity in H2 relaxin binding to a dimeric relaxin family peptide receptor 1. Mol Cell Endocrinol. 2008b;296(1–2):10–7.PubMedPubMedCentralCrossRefGoogle Scholar
  266. Szepietowska B, Gorska M, Szelachowska M. Plasma relaxin concentration is related to beta-cell function and insulin sensitivity in women with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2008;79(3):e1–3.PubMedPubMedCentralCrossRefGoogle Scholar
  267. Szydlarska D, Grzesiuk W, Trybuch A, Kondracka A, Kowalik I, Bar-Andziak E. Insulin-like factor 3 – a new hormone related to polycystic ovary syndrome? Endokrynol Pol. 2012;63(5):356–61.PubMedPubMedCentralGoogle Scholar
  268. Tan YY, Wade JD, Tregear GW, Summers RJ. Comparison of relaxin receptors in rat isolated atria and uterus by use of synthetic and native relaxin analogues. Br J Pharmacol. 1998;123(4):762–70.PubMedPubMedCentralCrossRefGoogle Scholar
  269. Tan YY, Dawson NF, Kompa AR, Bond CP, Claasz A, Wade JD, et al. Structural requirements for the interaction of sheep insulin-like factor 3 with relaxin receptors in rat atria. Eur J Pharmacol. 2002;457(2–3):153–60.PubMedPubMedCentralCrossRefGoogle Scholar
  270. Tao Y-X, Johnson NB, Segaloff DL. Constitutive and agonist-dependent self-association of the cell surface human lutropin receptor. J Biol Chem. 2004;279(7):5904–14.PubMedPubMedCentralCrossRefGoogle Scholar
  271. Tashima LS, Mazoujian G, Bryant-Greenwood GD. Human relaxins in normal, benign and neoplastic breast tissue. J Mol Endocrinol. 1994;12(3):351–64.PubMedPubMedCentralCrossRefGoogle Scholar
  272. Teerlink JR, Metra M, Felker GM, Ponikowski P, Voors AA, Weatherley BD, et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet. 2009;373(9673):1429–39.CrossRefPubMedGoogle Scholar
  273. Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381(9860):29–39.CrossRefPubMedGoogle Scholar
  274. Teichman SL, Unemori E, Dschietzig T, Conrad K, Voors AA, Teerlink JR, et al. Relaxin, a pleiotropic vasodilator for the treatment of heart failure. Heart Fail Rev. 2009;14(4):321–9.PubMedPubMedCentralCrossRefGoogle Scholar
  275. Telgmann R, Gellersen B. Marker genes of decidualization: activation of the decidual prolactin gene. Hum Reprod Update. 1998;4(5):472–9.PubMedPubMedCentralCrossRefGoogle Scholar
  276. Thanasupawat T, Glogowska A, Burg M, Wong GW, Hoang-Vu C, Hombach-Klonisch S, et al. RXFP1 is targeted by complement C1q tumor necrosis factor-related factor 8 in brain cancer. Front Endocrinol. 2015;6:127.CrossRefGoogle Scholar
  277. Thomas GR, Vandlen R. The purely chronotropic effects of relaxin in the rat isolated heart. J Pharm Pharmacol. 1993;45(10):927–8.PubMedPubMedCentralCrossRefGoogle Scholar
  278. Thompson VC, Morris TG, Cochrane DR, Cavanagh J, Wafa LA, Hamilton T, et al. Relaxin becomes upregulated during prostate cancer progression to androgen independence and is negatively regulated by androgens. Prostate. 2006;66(16):1698–709.PubMedPubMedCentralCrossRefGoogle Scholar
  279. Toth M, Taskinen P, Ruskoaho H. Relaxin stimulates atrial natriuretic peptide secretion in perfused rat heart. J Endocrinol. 1996;150(3):487–95.PubMedPubMedCentralCrossRefGoogle Scholar
  280. Unemori EN, Pickford LB, Salles AL, Piercy CE, Grove BH, Erikson ME, et al. Relaxin induces an extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. J Clin Invest. 1996;98(12):2739–45.PubMedPubMedCentralCrossRefGoogle Scholar
  281. Unemori EN, Erikson ME, Rocco SE, Sutherland KM, Parsell DA, Mak J, et al. Relaxin stimulates expression of vascular endothelial growth factor in normal human endometrial cells in vitro and is associated with menometrorrhagia in women. Hum Reprod. 1999;14(3):800–6.PubMedPubMedCentralCrossRefGoogle Scholar
  282. Unemori EN, Lewis M, Constant J, Arnold G, Grove BH, Normand J, et al. Relaxin induces vascular endothelial growth factor expression and angiogenesis selectively at wound sites. Wound Repair Regen. 2000;8(5):361–70.PubMedPubMedCentralCrossRefGoogle Scholar
  283. van der Westhuizen ET, Halls ML, Samuel CS, Bathgate RA, Unemori EN, Sutton SW, et al. Relaxin family peptide receptors – from orphans to therapeutic targets. Drug Discov Today. 2008;13(15–16):640–51.PubMedPubMedCentralCrossRefGoogle Scholar
  284. Vasilenko P, Mead JP, Weidmann JE. Uterine growth-promoting effects of relaxin: a morphometric and histological analysis. Biol Reprod. 1986;35(4):987–95.PubMedPubMedCentralCrossRefGoogle Scholar
  285. Velez-Ruiz GA, Sunahara RK. Reconstitution of g protein-coupled receptors into a model bilayer system: reconstituted high-density lipoprotein particles. Methods Mol Biol. 2011;756:167–82.PubMedPubMedCentralCrossRefGoogle Scholar
  286. Wade JD, Layden SS, Lambert PF, Kakouris H, Tregear GW. Primate relaxin: synthesis of gorilla and rhesus monkey relaxins. J Protein Chem. 1994;13:315–21.PubMedPubMedCentralCrossRefGoogle Scholar
  287. Wang P, Li HW, Wang YP, Chen H, Zhang P. Effects of recombinant human relaxin upon proliferation of cardiac fibroblast and synthesis of collagen under high glucose condition. J Endocrinol Investig. 2009;32(3):242–7.CrossRefGoogle Scholar
  288. Ward DG, Thomas GR, Cronin MJ. Relaxin increases rat heart rate by a direct action on the cardiac atrium. Biochem Biophys Res Commun. 1992;186(2):999–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  289. Weiss G. Relaxin in the male. Biol Reprod. 1989;40(2):197–200.PubMedPubMedCentralCrossRefGoogle Scholar
  290. Whittaker PG, Edwards JR, Randolph C, Bullesbach EE, Schwabe C, Steinetz BG. Abnormal relaxin secretion during pregnancy in women with type 1 diabetes. Exp Biol Med. 2003;228(1):33–40.CrossRefGoogle Scholar
  291. Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A. 2007;104(18):7682–7.PubMedPubMedCentralCrossRefGoogle Scholar
  292. Wiedemar N, Tetens J, Jagannathan V, Menoud A, Neuenschwander S, Bruggmann R, et al. Independent polled mutations leading to complex gene expression differences in cattle. PLoS One. 2014;9(3):e93435.PubMedPubMedCentralCrossRefGoogle Scholar
  293. Willoughby D, Baillie GS, Lynch MJ, Ciruela A, Houslay MD, Cooper DM. Dynamic regulation, desensitization, and cross-talk in discrete subcellular microdomains during beta2-adrenoceptor and prostanoid receptor cAMP signaling. J Biol Chem. 2007;282(47):34235–49.PubMedPubMedCentralCrossRefGoogle Scholar
  294. Winslow JW, Shih A, Bourell JH, Weiss G, Reed B, Stults JT, et al. Human seminal relaxin is a product of the same gene as human luteal relaxin. Endocrinology. 1992;130(5):2660–8.PubMedPubMedCentralCrossRefGoogle Scholar
  295. Xiao J, Chen CZ, Huang Z, Agoulnik IU, Ferrer M, Southall N, et al. Discovery, optimization and biological activity of the first potent and selective small-molecule agonist series of the human relaxin hormone receptor RXFP1. report NP; 2012.Google Scholar
  296. Xiao J, Huang Z, Chen CZ, Agoulnik IU, Southall N, Hu X, et al. Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1. Nat Commun. 2013;4:1–7.Google Scholar
  297. Xu Q, Lekgabe ED, Gao XM, Ming Z, Tregear GW, Dart AM, et al. Endogenous relaxin does not affect chronic pressure overload-induced cardiac hypertrophy and fibrosis. Endocrinology. 2008;149(2):476–82.PubMedPubMedCentralCrossRefGoogle Scholar
  298. Xu Q, Chakravorty A, Bathgate RA, Dart AM, Du XJ. Relaxin therapy reverses large artery remodeling and improves arterial compliance in senescent spontaneously hypertensive rats. Hypertension. 2010;55(5):1260–6.PubMedPubMedCentralCrossRefGoogle Scholar
  299. Yan Y, Scott DJ, Wilkinson TN, Ji J, Tregear GW, Bathgate RA. Identification of the N-linked glycosylation sites of the human relaxin receptor and effect of glycosylation on receptor function. Biochemistry. 2008;47(26):6953–68.PubMedPubMedCentralCrossRefGoogle Scholar
  300. Yki JH, Wahlstrom T, Seppala M. Immunohistochemical demonstration of relaxin in the genital tract of men. J Reprod Fertil. 1983;69(2):693–5.CrossRefGoogle Scholar
  301. Yoshida T, Kumagai H, Kohsaka T, Ikegaya N. Relaxin protects against renal ischemia-reperfusion injury. Am J Physiol Ren Physiol. 2013;305(8):F1169–76.CrossRefGoogle Scholar
  302. Zhang Q, Liu SH, Erikson M, Lewis M, Unemori E. Relaxin activates the MAP kinase pathway in human endometrial stromal cells. J Cell Biochem. 2002;85(3):536–44.PubMedPubMedCentralCrossRefGoogle Scholar
  303. Zhang J, Qi YF, Geng B, Pan CS, Zhao J, Chen L, et al. Effect of relaxin on myocardial ischemia injury induced by isoproterenol. Peptides. 2005;26(9):1632–9.PubMedPubMedCentralCrossRefGoogle Scholar
  304. Zhang S, Hughes RA, Bathgate RA, Shabanpoor F, Hossain MA, Lin F, et al. Role of the intra-A-chain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2. Peptides. 2010;31(9):1730–6.PubMedPubMedCentralCrossRefGoogle Scholar
  305. Zhao L, Roche PJ, Gunnersen JM, Hammond VE, Tregear GW, Wintour EM, et al. Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology. 1999;140(1):445–53.PubMedPubMedCentralCrossRefGoogle Scholar
  306. Zimmermann S, Schottler P, Engel W, Adham IM. Mouse Leydig insulin-like (Ley I-L) gene: structure and expression during testis and ovary development. Mol Reprod Dev. 1997;47(1):30–8.PubMedPubMedCentralCrossRefGoogle Scholar
  307. Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, et al. Targeted disruption of the INSL3 gene causes bilateral cryptorchidism. Mol Endocrinol. 1999;13(5):681–91.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Roger J. Summers
    • 1
    Email author
  • Michelle L. Halls
    • 1
  • Ross A. D. Bathgate
    • 2
  1. 1.Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  2. 2.Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleAustralia