Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

CD38

  • Leopoldo Santos-Argumedo
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_278

Synonyms

Historical Background

CD38, as many molecules described in this encyclopedia, was described and characterized in the period 1980–1990, using a mouse monoclonal antibody recognizing human CD38 (mAb) (OKT-10) developed by Ellie L. Reinherz et al. (1980). Through the use of this and many other mAbs, it was determined that CD38 is expressed in activated human T cells, plasma cells, and several lymphoid and myeloid cells as well as many cell malignancies. CD38 was rediscovered in mice by the mAb NIM-R5 developed by Mike Parkhouse and his group at the National Institute of Medical Research, Mill Hill, London, UK (Santos-Argumedo et al. 1993), and in conjunction with other tools, allowed its biochemical and biological characterization. Despite being a useful marker, very little was known about its function....

This is a preview of subscription content, log in to check access.

References

  1. Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G, Dianzani U, Stockinger H, Malavasi F. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol. 1998;160(1):395–402.PubMedPubMedCentralGoogle Scholar
  2. Galione A, Lee HC, Busa WB. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991;253(5024):1143–6.PubMedCrossRefGoogle Scholar
  3. GenAtlas®. http://genatlas.medecine.univ-paris5.fr/imagin/go_gene.php#Google Scholar
  4. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, Walseth TF, Lee HC. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993;262(5136):1056–9.PubMedCrossRefGoogle Scholar
  5. Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, Shnayder NA, Yamada K, Noda M, Seike T, Fujita K, Takasawa S, Yokoyama S, Koizumi K, Shiraishi Y, Tanaka S, Hashii M, Yoshihara T, Higashida K, Islam MS, Yamada N, Hayashi K, Noguchi N, Kato I, Okamoto H, Matsushima A, Salmina A, Munesue T, Shimizu N, Mochida S, Asano M, Higashida H. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature. 2007;446(7131):41–5.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Liu Q, Kriksunov IA, Graeff R, Munshi C, Lee HC, Hao Q. Crystal structure of human CD38 extracellular domain. Structure. 2005;13(9):1331–9.PubMedCrossRefGoogle Scholar
  7. Lund FE, Muller-Steffner H, Romero-Ramirez H, Moreno-García ME, Partida-Sánchez S, Makris M, Oppenheimer NJ, Santos-Argumedo L, Schuber F. CD38 induces apoptosis of a murine pro-B leukemic cell line by a tyrosine kinase-dependent but ADP-ribosyl cyclase- and NAD glycohydrolase-independent mechanism. Int Immunol. 2006;18(7):1029–42.PubMedCrossRefGoogle Scholar
  8. Manjarrez-Orduño N, Moreno-García ME, Fink K, Santos-Argumedo L. CD38 cross-linking enhances TLR-induced B cell proliferation but decreases IgM plasma cell differentiation. Eur J Immunol. 2007;37(2):358–67.PubMedCrossRefGoogle Scholar
  9. Moreno-García ME, López-Bojórques LN, Zentella A, Humphries LA, Rawlings DJ, Santos-Argumedo L. CD38 signaling regulates B lymphocyte activation via a phospholipase C (PLC)-gamma 2-independent, protein kinase C, phosphatidylcholine-PLC, and phospholipase D-dependent signaling cascade. J Immunol. 2005;174(5):2687–95.PubMedCrossRefGoogle Scholar
  10. Muñoz P, Navarro MD, Pavón EJ, Salmerón J, Malavasi F, Sancho J, Zubiaur M. CD38 signaling in T cells is initiated within a subset of membrane rafts containing Lck and the CD3-zeta subunit of the T cell antigen receptor. J Biol Chem. 2003;278(50):50791–802.PubMedCrossRefGoogle Scholar
  11. Partida-Sanchez S, Gasser A, Fliegert R, Siebrands CC, Dammermann W, Shi G, Mousseau BJ, Sumoza-Toledo A, Bhagat H, Walseth TF, Guse AH, Lund FE. Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction. J Immunol. 2007;179(11):7827–39.PubMedCrossRefGoogle Scholar
  12. Quarona V, Zaccarello G, Chillemi A, Brunetti E, Singh VK, Ferrero E, Funaro A, Horenstein AL, Malavasi F. CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytometry B Clin Cytom. 2013;84(4):207–17.PubMedCrossRefGoogle Scholar
  13. Reinherz EL, Kung PC, Goldstein G, Levey RH, Schlossman SF. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A. 1980;77(3):1588–92.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Rodríguez-Alba JC, Moreno-García ME, Sandoval-Montes C, Rosales-Garcia VH, Santos-Argumedo L. CD38 induces differentiation of immature transitional 2 B lymphocytes in the spleen. Blood. 2008;111(7):3644–52.PubMedCrossRefGoogle Scholar
  15. Romero-Ramírez H, Morales-Guadarrama MT, Pelayo R, López-Santiago R, Santos-Argumedo L. CD38 expression in early B-cell precursors contributes to extracellular signal-regulated kinase-mediated apoptosis. Immunology. 2015;144(2):271–81.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Santos-Argumedo L, Teixeira C, Preece G, Kirkham PA, Parkhouse RM. A B lymphocyte surface molecule mediating activation and protection from apoptosis via calcium channels. J Immunol. 1993;151(6):3119–30.PubMedPubMedCentralGoogle Scholar
  17. Shen M, Yen A. c-Cbl interacts with CD38 and promotes retinoic acid-induced differentiation and G0 arrest of human myeloblastic leukemia cells. Cancer Res. 2008;68(21):8761–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. van de Donk NW, Janmaat ML, Mutis T, Lammerts van Bueren JJ, Ahmadi T, Sasser AK, Lokhorst HM, Parren PW. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev. 2016;270(1):95–112.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Vences-Catalán F, Rajapaksa R, Levy S, Santos-Argumedo L. The CD19/CD81 complex physically interacts with CD38 but is not required to induce proliferation in mouse B lymphocytes. Immunology. 2012;137(1):48–55.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca(2+) signaling pathway. World J Biol Chem. 2014;5(1):58–67.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Zhao YJ, Lam CM, Lee HC. The membrane-bound enzyme CD38 exists in two opposing orientations. Sci Signal. 2012;5(241):ra67.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Departamento de Biomedicina MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV-IPN)Mexico CityMexico