Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Masato OkadaEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_264


Historical Background

The activity of the  Src family tyrosine kinases (SFKs), known as representative proto-oncogene products, is negatively regulated by the phosphorylation at their C-terminal regulatory tyrosine (Brown and Cooper 1996; Cooper et al. 1986). The protein tyrosine kinase Csk was identified as a specific kinase that directs the negative regulatory sites of SFKs (Nada et al. 1991; Okada and Nakagawa 1988). Analysis of Csk-deficient mice and cells provided evidence that Csk functions as an indispensable negative regulator of SFKs (Nada et al. 1991, 1993). The molecular basis of Csk-SFK interaction is recently verified by the crystal structure of Csk/c-Src complex (Levinson et al. 2008). Csk is expressed ubiquitously, but is highly concentrated in developing nervous system and the immune system (Okada et al. 1991). Csk is highly conserved in animal kingdom from the unicellular choanoflagellate to human in parallel with SFKs...
This is a preview of subscription content, log in to check access.


  1. Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochim Biophys Acta. 1996;1287:121–49.PubMedPubMedCentralGoogle Scholar
  2. Cao H, Courchesne WE, Mastick CC. A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem. 2002;277:8771–4.PubMedCrossRefGoogle Scholar
  3. Cooper JA, Gould KL, Cartwright CA, Hunter T. Tyr527 is phosphorylated in pp 60c-src: implications for regulation. Science. 1986;231:1431–4.PubMedCrossRefGoogle Scholar
  4. Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure. 2005;13:861–71.PubMedCrossRefGoogle Scholar
  5. D’Arco M, Giniatullin R, Leone V, Carloni P, Birsa N, Nair A, Nistri A, Fabbretti E. The C-terminal Src inhibitory kinase (Csk)-mediated tyrosine phosphorylation is a novel molecular mechanism to limit P2X3 receptor function in mouse sensory neurons. J Biol Chem. 2009;284:21393–401.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Howell BW, Cooper JA. Csk suppression of Src involves movement of Csk to sites of Src activity. Mol Cell Biol. 1994;14:5402–11.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Nada S, Nagai K, Tarakhovsky A, Okada M. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature. 2000;404:999–1003.PubMedCrossRefGoogle Scholar
  8. Lee S, Lin X, Nam NH, Parang K, Sun G. Determination of the substrate-docking site of protein tyrosine kinase C-terminal Src kinase. Proc Natl Acad Sci U S A. 2003;100:14707–12.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Lee S, Ayrapetov MK, Kemble DJ, Parang K, Sun G. Docking-based substrate recognition by the catalytic domain of a protein tyrosine kinase, C-terminal Src kinase (Csk). J Biol Chem. 2006;281:8183–9.PubMedCrossRefGoogle Scholar
  10. Levinson NM, Seeliger MA, Cole PA, Kuriyan J. Structural basis for the recognition of c-Src by its inactivator Csk. Cell. 2008;134:124–34.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Masaki T, Okada M, Tokuda M, Shiratori Y, Hatase O, Shirai M, Nishioka M, Omata M. Reduced C-terminal Src kinase (Csk) activities in hepatocellular carcinoma. Hepatology. 1999;29:379–84.PubMedCrossRefGoogle Scholar
  12. Mills JE, Whitford PC, Shaffer J, Onuchic JN, Adams JA, Jennings PA. A novel disulfide bond in the SH2 domain of the C-terminal Src kinase controls catalytic activity. J Mol Biol. 2007;365:1460–8.PubMedCrossRefGoogle Scholar
  13. Nada S, Okada M, MacAuley A, Cooper JA, Nakagawa H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature. 1991;351:69–72.PubMedCrossRefGoogle Scholar
  14. Nada S, Yagi T, Takeda H, Tokunaga T, Nakagawa H, Ikawa Y, Okada M, Aizawa S. Constitutive activation of Src family kinases in mouse embryos that lack Csk. Cell. 1993;73:1125–35.PubMedCrossRefGoogle Scholar
  15. Nada S, Okada M, Aizawa S, Nakagawa H. Identification of major tyrosine-phosphorylated proteins in Csk-deficient cells. Oncogene. 1994;9:3571–8.PubMedPubMedCentralGoogle Scholar
  16. Ogawa A, Takayama Y, Sakai H, Chong KT, Takeuchi S, Nakagawa A, Nada S, Okada M, Tsukihara T. Structure of the carboxyl-terminal Src kinase, Csk. J Biol Chem. 2002;277:14351–4.PubMedCrossRefGoogle Scholar
  17. Okada M, Nakagawa H. Identification of a novel protein tyrosine kinase that phosphorylates pp 60c-src and regulates its activity in neonatal rat brain. Biochem Biophys Res Commun. 1988;154:796–802.PubMedCrossRefGoogle Scholar
  18. Okada M, Nada S, Yamanashi Y, Yamamoto T, Nakagawa HCSK. a protein-tyrosine kinase involved in regulation of src family kinases. J Biol Chem. 1991;266:24249–52.PubMedPubMedCentralGoogle Scholar
  19. Oneyama C, Hikita T, Enya K, Dobenecker MW, Saito K, Nada S, Tarakhovsky A, Okada M. The lipid raft-anchored adaptor protein Cbp controls the oncogenic potential of c-Src. Mol Cell. 2008a;30:426–36.PubMedCrossRefGoogle Scholar
  20. Oneyama C, Hikita T, Nada S, Okada M. Functional dissection of transformation by c-Src and v-Src. Genes Cells. 2008b;13:1–12.PubMedCrossRefGoogle Scholar
  21. Read RD, Bach EA, Cagan RL. Drosophila C-terminal Src kinase negatively regulates organ growth and cell proliferation through inhibition of the Src, Jun N-terminal kinase, and STAT pathways. Mol Cell Biol. 2004;24:6676–89.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Sabe H, Hata A, Okada M, Nakagawa H, Hanafusa H. Analysis of the binding of the Src homology 2 domain of Csk to tyrosine-phosphorylated proteins in the suppression and mitotic activation of c-Src. Proc Natl Acad Sci U S A. 1994;91:3984–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Schmedt C, Saijo K, Niidome T, Kuhn R, Aizawa S, Tarakhovsky A. Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature. 1998;394:901–4.PubMedCrossRefGoogle Scholar
  24. Segawa Y, Suga H, Iwabe N, Oneyama C, Akagi T, Miyata T, Okada M. Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Proc Natl Acad Sci U S A. 2006;103:12021–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Stewart RA, Li DM, Huang H, Xu T. A genetic screen for modifiers of the lats tumor suppressor gene identifies C-terminal Src kinase as a regulator of cell proliferation in Drosophila. Oncogene. 2003;22:6436–44.PubMedCrossRefGoogle Scholar
  26. Suzuki K, Oneyama C, Kimura H, Tajima S, Okada M. Downregulation of the tumor suppressor Cbp/PAG1 is mediated by epigenetic histone modifications via the MAPK/PI3K pathway. J Biol Chem. 2011;286(18):15698–706.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Takata N, Itoh B, Misaki K, Hirose T, Yonemura S, Okada M. Non-receptor tyrosine kinase CSK-1 controls pharyngeal muscle organization in Caenorhabditis elegans. Genes Cells. 2009;14:381–93.PubMedCrossRefGoogle Scholar
  28. Takeuchi M, Kuramochi S, Fusaki N, Nada S, Kawamura-Tsuzuku J, Matsuda S, Semba K, Toyoshima K, Okada M, Yamamoto T. Functional and physical interaction of protein-tyrosine kinases Fyn and Csk in the T-cell signaling system. J Biol Chem. 1993;268:27413–9.PubMedPubMedCentralGoogle Scholar
  29. Thomas RM, Schmedt C, Novelli M, Choi BK, Skok J, Tarakhovsky A, Roes J. C-terminal SRC kinase controls acute inflammation and granulocyte adhesion. Immunity. 2004;20:181–91.PubMedCrossRefGoogle Scholar
  30. Wong L, Lieser S, Chie-Leon B, Miyashita O, Aubol B, Shaffer J, Onuchic JN, Jennings PA, Woods Jr VL, Adams JA. Dynamic coupling between the SH2 domain and active site of the COOH terminal Src kinase, Csk. J Mol Biol. 2004;341:93–106.PubMedCrossRefGoogle Scholar
  31. Wong L, Lieser SA, Miyashita O, Miller M, Tasken K, Onuchic JN, Adams JA, Woods Jr VL, Jennings PA. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation. J Mol Biol. 2005;351:131–43.PubMedCrossRefGoogle Scholar
  32. Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src. Nature. 1997;385:595–602.PubMedCrossRefGoogle Scholar
  33. Yagi R, Waguri S, Sumikawa Y, Nada S, Oneyama C, Itami S, Schmedt C, Uchiyama Y, Okada M. C-terminal Src kinase controls development and maintenance of mouse squamous epithelia. EMBO J. 2007;26:1234–44.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Yaqub S, Abrahamsen H, Zimmerman B, Kholod N, Torgersen KM, Mustelin T, Herberg FW, Tasken K, Vang T. Activation of C-terminal Src kinase (Csk) by phosphorylation at serine-364 depends on the Csk-Src homology 3 domain. Biochem J. 2003;372:271–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Zhu F, Choi BY, Ma WY, Zhao Z, Zhang Y, Cho YY, Choi HS, Imamoto A, Bode AM, Dong Z. COOH-terminal Src kinase-mediated c-Jun phosphorylation promotes c-Jun degradation and inhibits cell transformation. Cancer Res. 2006;66:5729–36.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Oncogene Research, Research Institute for Microbial DiseasesOsaka UniversitySuita, OsakaJapan