Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

MLK3

  • Chotirat Rattanasinchai
  • Jian Chen
  • Kathleen A. Gallo
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_247

Synonyms

Historical Background

The mixed-lineage kinases are so named for their sequence similarity to both tyrosine kinases and serine/threonine kinases. However, based on biochemical assays, only serine/threonine kinase activity has been demonstrated for the MLKs. The three subfamilies of MLKs reside within the “tyrosine kinase-like” branch of the human kinome. Members of the MLK subfamily, comprised of MLK1-4, share a conserved domain arrangement and 75% identity within their catalytic domains (Fig. 1). The dual leucine zipper–bearing kinase (DLK) subgroup of MLKs, which includes DLK/ZPK/MUK and LZK, is characterized by a kinase catalytic domain followed by two leucine zipper motifs. A third subgroup of MLKs represented by ZAK/MLTK contains both a leucine zipper motif and a sterile-alpha motif. MLK3 has emerged as the paradigm for the MLK...
This is a preview of subscription content, log in to check access.

References

  1. Chadee DN. Involvement of mixed lineage kinase 3 in cancer. Can J Physiol Pharmacol. 2013;91:268–74.CrossRefPubMedGoogle Scholar
  2. Chen J, Miller EM, Gallo KA. MLK3 is critical for breast cancer cell migration and promotes a malignant phenotype in mammary epithelial cells. Oncogene. 2010;29:4399–411.CrossRefPubMedGoogle Scholar
  3. Chen J, Gallo KA. MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Res. 2012;72:4130–40.CrossRefPubMedGoogle Scholar
  4. Craige SM, Reif MM, Kant S. Mixed-lineage kinases (MLKs) in inflammation, metabolism, and other disease states. Biochim Biophs Acta – Mol Basis Dis. 2016;1862:1581–6.CrossRefGoogle Scholar
  5. Dhanasekaran DN, Kashef K, Lee CM, Xu H, Reddy EP. Scaffold proteins of MAP-kinase modules. Oncogene. 2007;26:3185–202.CrossRefPubMedGoogle Scholar
  6. Eggert D, Dash PK, Gorantla S, Dou H, Schifitto G, Maggirwar SB, Dewhurst S, Poluektova L, Gelbard HA, Gendelman HE. Neuroprotective activities of CEP-1347 in models of neuroAIDS. J Immunol. 2010;184:746–56.CrossRefPubMedGoogle Scholar
  7. Falsig J, Pörzgen P, Lotharius J, Leist M. Specific modulation of astrocyte inflammation by inhibition of mixed lineage kinases with CEP-1347. J Immunol. 2004;173:2762–70.CrossRefPubMedGoogle Scholar
  8. Gallo KA, Johnson GL. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol. 2002;3:663–72.CrossRefPubMedGoogle Scholar
  9. Handley ME, Rasaiyaah J, Chain BM, Katz DR. Mixed lineage kinases (MLKs): a role in dendritic cells, inflammation and immunity? Int J Exp Pathol. 2007;88:111–26.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Kyriakis JM. The integration of signaling by multiprotein complexes containing Raf kinases. Biochim Biophys Acta. 2007;1773:1238–47.CrossRefPubMedGoogle Scholar
  11. Marker DF, Tremblay ME, Puccini JM, Barbieri J, Gantz Marker MA, Loweth CJ, Muly EC, Lu SM, Goodfellow VS, Dewhurst S, Gelbard HA. The new small-molecule mixed-lineage kinase 3 inhibitor URMC-099 is neuroprotective and anti-inflammatory in models of human immunodeficiency virus-associated neurocognitive disorders. J Neurosci. 2013;33:9998–10010.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Mishra R, Barthwal MK, Sondarva G, Rana B, Wong L, Chatterjee M, Woodgett JR, Rana A. Glycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3. J Biol Chem. 2007;282:30393–405.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Parkinson Study Group PRECEPT Investigators. Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology. 2007;69:1480–90.CrossRefGoogle Scholar
  14. Rattanasinchai C, Gallo KA. MLK3 signaling in cancer invasion. Cancers. 2016;8(5):51. Review.CrossRefPubMedCentralGoogle Scholar
  15. Shintani Y, Fukumoto Y, Chaika N, Svoboda R, Wheelock MJ, Johnson KR. Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol. 2008;180:1277–89.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Swenson-Fields KI, Sandquist JC, Rossol-Allison J, Blat IC, Wennerberg K, Burridge K, Means AR. MLK3 limits activated Galphaq signaling to Rho by binding to p63RhoGEF. Mol Cell. 2008;32:43–56.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Velho S, Pinto A, Licasto D, Oliveira MJ, Sousa F, Stupka E, Seruca R. Dissecting the signaling pathways associated with the oncogenic activity of MLK3 P252H mutation. BMC Cancer. 2014;14:182.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Wang LH, Besirli CG, Johnson Jr EM. Mixed-lineage kinases: a target for the prevention of neurodegeneration. Annu Rev Pharmacol Toxicol. 2004;44:451–74.CrossRefPubMedGoogle Scholar
  19. Zhang Q-G, Wang R, Hana D, Dong Y, Branna DW. Role of Rac1 GTPase in JNK signaling and delayed neuronal cell death following global cerebral ischemia. Brain Res. 2009;1265:138–47.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Zhang G, Guo D, Dash PK, Arainga M, Wiederin JL, Haverland NA, Knibbe-Hollinger J, Martinez-Skinner A, Ciborowski P, Goodfellow VS, Wysocki TA, Wysocki BJ, Poluektova LY, Liu XM, McMillan JM, Gorantla S, Gelbard HA, Gendelman HE. The mixed lineage kinase-3 inhibitor URMC-099 improves therapeutic outcomes for long-acting antiretroviral therapy. Nanomedicine. 2016;12:109–22.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Chotirat Rattanasinchai
    • 1
    • 2
  • Jian Chen
    • 3
    • 4
  • Kathleen A. Gallo
    • 1
    • 2
  1. 1.Cell and Molecular Biology ProgramMichigan State UniversityEast LansingUSA
  2. 2.Department of PhysiologyMichigan State UniversityEast LansingUSA
  3. 3.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA
  4. 4.Department of MedicineDuke UniversityDurhamUSA