Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

MALT1(Mucosa-Associated Lymphoid Tissue Translocation Gene 1)

  • Andreas GewiesEmail author
  • Jürgen Ruland
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_234


Historical Background

Around the beginnings of the 1990s several cytogenetic studies reported the occurrence of t(11;18)(q21;q21) chromosomal translocations in several cases of low-grade Mucosa-Associated Lymphoid Tissue (MALT) lymphoma. Later, Akagi and colleagues identified a novel gene on chromosome 18 to be involved in the t(11;18)(q21;q21) translocation which they named MALT1 as a candidate gene involved in the pathogenesis of MALT lymphoma (Akagi et al. 1999). Already a few months earlier, Dierlamm and colleagues also reported MALT1 (which they named MLT) as part of the t(11;18)(q21;q21) translocation as well its translocation partner on chromosome 11, the API2 gene, resulting in the expression of a 5-API2-MALT1-3′ fusion transcript (Dierlamm et al. 1999). While the function of the MALT1 gene product was completely unclear at that time, the API2gene had already been known to encode for...

This is a preview of subscription content, log in to check access.



We thank Frank Oliver Gorka for thoughtfully reading and discussing the manuscript.


  1. Akagi T, Motegi M, Tamura A, Suzuki R, Hosokawa Y, Suzuki H, Ota H, Nakamura S, Morishima Y, Taniwaki M, Seto M. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene. 1999;18(42):5785–94.CrossRefGoogle Scholar
  2. Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, Staal J, Sun L, Chen ZJ, Marynen P, Beyaert R. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol. 2008;9(3):263–71.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, De Wolf-Peeters C, Hagemeijer A, Van den Berghe H, Marynen P. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 1999;93(11):3601–9.PubMedGoogle Scholar
  4. Duwel M, Welteke V, Oeckinghaus A, Baens M, Kloo B, Ferch U, Darnay BG, Ruland J, Marynen P, Krappmann D. A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains. J Immunol. 2009;182(12):7718–28.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Duwel M, Hadian K, Krappmann D. Ubiquitin conjugation and deconjugation in NF-kappaB signaling. Subcell Biochem. 2010;54:88–99.CrossRefPubMedGoogle Scholar
  6. Ferch U, ZumBuschenfelde CM, Gewies A, Wegener E, Rauser S, Peschel C, Krappmann D, Ruland J. MALT1 directs B cell receptor-induced canonical nuclear factor-kappaB signaling selectively to the c-Rel subunit. Nat Immunol. 2007;8(9):984–91.CrossRefPubMedGoogle Scholar
  7. Ferch U, Kloo B, Gewies A, Pfander V, Duwel M, Peschel C, Krappmann D, Ruland J. Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. J Exp Med. 2009;206(11):2313–20.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, Forster I, Ruland J. Card9 controls a non-TLR signaling pathway for innate anti-fungal immunity. Nature. 2006;442(7103):651–6.CrossRefPubMedGoogle Scholar
  9. Gross O, Grupp C, Steinberg C, Zimmermann S, Strasser D, Hannesschlager N, Reindl W, Jonsson H, Huo H, Littman DR, Peschel C, Yokoyama WM, Krug A, Ruland J. Multiple ITAM-coupled NK-cell receptors engage the Bcl10/Malt1 complex via Carma1 for NF-kappaB and MAPK activation to selectively control cytokine production. Blood. 2008;112(6):2421–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hailfinger S, Nogai H, Pelzer C, Jaworski M, Cabalzar K, Charton JE, Guzzardi M, Decaillet C, Grau M, Dorken B, Lenz P, Lenz G, Thome M. Malt1-dependent RelB cleavage promotes canonical NF-{kappa}B activation in lymphocytes and lymphoma cell lines. Proc Natl Acad Sci USA. 2012;108(35):14596–601.CrossRefGoogle Scholar
  11. Hara H, Saito T. CARD9 versus CARMA1 in innate and adaptive immunity. Trends Immunol. 2009;30(5):234–42.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Jost PJ, Weiss S, Ferch U, Gross O, Mak TW, Peschel C, Ruland J. Bcl10/Malt1 signaling is essential for TCR-induced NF-kappaB activation in thymocytes but dispensable for positive or negative selection. J Immunol. 2007;178(2):953–60.CrossRefPubMedGoogle Scholar
  13. Kawadler H, Gantz MA, Riley JL, Yang X. The paracaspase MALT1 controls caspase-8 activation during lymphocyte proliferation. Mol Cell. 2008;31(3):415–21.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Klemm S, Ruland J. Inflammatory signal transduction from the Fc epsilon RI to NF-kappa B. Immunobiology. 2006;10:815–20.CrossRefGoogle Scholar
  15. Klemm S, Gutermuth J, Hultner L, Sparwasser T, Behrendt H, Peschel C, Mak TW, Jakob T, Ruland J. The Bcl10-Malt1 complex segregates Fc epsilon RI-mediated nuclear factor kappa B activation and cytokine production from mast cell degranulation. J Exp Med. 2006;203(2):337–47.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Klemm S, Zimmermann S, Peschel C, Mak TW, Ruland J. Bcl10 and Malt1 control lysophosphatidic acid-induced NF-kappaB activation and cytokine production. Proc Natl Acad Sci USA. 2007;104(1):134–8.CrossRefPubMedGoogle Scholar
  17. Mocsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010;10(6):387–402.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Oeckinghaus A, Wegener E, Welteke V, Ferch U, Arslan SC, Ruland J, Scheidereit C, Krappmann D. Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation. EMBO J. 2007;26(22):4634–45.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Rebeaud F, Hailfinger S, Posevitz-Fejfar A, Tapernoux M, Moser R, Rueda D, Gaide O, Guzzardi M, Iancu EM, Rufer N, Fasel N, Thome M. The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol. 2008;9(3):272–81.CrossRefPubMedGoogle Scholar
  20. Rosebeck S, Madden L, Jin X, Gu S, Apel IJ, Appert A, Hamoudi RA, Noels H, Sagaert X, Van Loo P, Baens M, MQ D, Lucas PC, McAllister-Lucas LM. Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science. 2012;331(6016):468–72.CrossRefGoogle Scholar
  21. Ruefli-Brasse AA, French DM, Dixit VM. Regulation of NF-kappaB-dependent lymphocyte activation and development by paracaspase. Science. 2003;302(5650):1581–4.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ruland J, Duncan GS, Elia A, del Barco Barrantes I, Nguyen L, Plyte S, Millar DG, Bouchard D, Wakeham A, Ohashi PS, Mak TW. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-kappaB and neural tube closure. Cell. 2001;104(1):33–42.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ruland J, Duncan GS, Wakeham A, Mak TW. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity. 2003;19(5):749–58.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Schoenen H, Bodendorfer B, Hitchens K, Manzanero S, Werninghaus K, Nimmerjahn F, Agger EM, Stenger S, Andersen P, Ruland J, Brown GD, Wells C, Lang R. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol. 2010;184(6):2756–60.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D, Van Damme P, Gevaert K, Beyaert R. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J. 2012;30(9):1742–52.CrossRefGoogle Scholar
  26. Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 2004;14(3):289–301.CrossRefPubMedGoogle Scholar
  27. Thome M, Charton JE, Pelzer C, Hailfinger S. Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol. 2010;2(9):a003004.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Tusche MW, Ward LA, Vu F, McCarthy D, Quintela-Fandino M, Ruland J, Gommerman JL, Mak TW. Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets. J Exp Med. 2009;206(12):2671–83.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell. 2000;6(4):961–7.PubMedGoogle Scholar
  30. Xue L, Morris SW, Orihuela C, Tuomanen E, Cui X, Wen R, Wang D. Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells. Nat Immunol. 2003;4(9):857–65.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory for Signaling in the Immune SystemHelmholtz Zentrum München – German Research Center for Environmental HealthNeuherbergGermany
  2. 2.Third Medical Department, Institute for Molecular ImmunologyTechnical University of Munich, Klinikum rechts der IsarMunichGermany