Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

p38 MAPK Family

  • John Papaconstantinou
  • Ching-Chyuan Hsieh
  • James H. DeFord
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_221

Synonyms

 p38α: Crk1; Csbp1; CSBP2; Mapk14; Mitogen activated protein kinase 14; Mxi2; p38; p38 alpha Map kinase; p38 alpha MAP kinase; p38 alpha MAPK; p38-alpha; p38a; p38alpha; p38alpha MAPK; PRKM14; PRKM15

 p38β: Mapk11; Mitogen-activated protein kinase 11; p38 beta MAP kinase; p38 beta Map kinase; p38 beta MAPK; p38-2; p38B; p38beta; p38beta MAPK; P38BETA2; Prkm11; Protein kinase, mitogen activated kinase, 11; SAPK2; SAPK2B

 p38δ: Mapk13; MAPK13; Mitogen-activated protein kinase 13; p38 delta Map kinase; p38 delta MAP kinase; p38 delta MAPK; p38d; p38delta; p38delta MAPK; PRKM13; SAPK4; Serk4

 p38γ: ERK6; Mapk12; Mitogen-activated protein kinase 12; p38 gamma MAP kinase; p38 gamma Map kinase; p38 gamma MAPK; p38g; p38gamma; p38gamma MAPK; Prkm12; SAPK-3; SAPK3; Stress-activated protein kinase 3

Historical Background: The p38 MAPK Family of Stress Response Signaling

The biological transduction of physiological and environmental signals involves highly specific protein-protein...
This is a preview of subscription content, log in to check access.

References

  1. Allen M, Svensson L, Roach M, Hambor J, McNeish J, Gabel CA. Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J Exp Med. 2000;191:859–70.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bendotti C, Bao Cutrona M, Cheroni C, Grignaschi G, Lo Coco D, Peviani M, Tortarolo M, Veglianese P, Zennaro E. Inter- and intracellular signaling in amyotrophic lateral sclerosis: role of p38 mitogen-activated protein kinase. Neurodegener Dis. 2005;2:128–34.CrossRefPubMedGoogle Scholar
  3. Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ. Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol. 1998;8:1049–57.CrossRefPubMedGoogle Scholar
  4. Bredeson S, Papaconstantinou J, Deford JH, Kechichian T, Syed TA, Saade GR, Menon R. HMGB1 promotes a p38MAPK associated non-infectious inflammatory response pathway in human fetal membranes. PLoS One. 2014;9:e113799.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Brobey RK, German D, Sonsalla PK, Gurnani P, Pastor J, Hsieh CC, Papaconstantinou J, Foster PP, Kuro-o M, Rosenblatt KP. Klotho protects dopaminergic neuron oxidant-induced degeneration by modulating ASK1 and p38 MAPK signaling pathways. PLoS One. 2015;10:e0139914.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cardier JE, Erickson-Miller CL. Fas (CD95)- and tumor necrosis factor-mediated apoptosis in liver endothelial cells: role of caspase-3 and the p38 MAPK. Microvasc Res. 2002;63:10–8.CrossRefPubMedGoogle Scholar
  7. Chang CI, Xu BE, Akella R, Cobb MH, Goldsmith EJ. Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell. 2002;9:1241–9.CrossRefPubMedGoogle Scholar
  8. Conrad PW, Rust RT, Han J, Millhorn DE, Beitner-Johnson D. Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells. J Biol Chem. 1999;274:23570–6.CrossRefPubMedGoogle Scholar
  9. Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429:403–17.CrossRefGoogle Scholar
  10. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773:1358–75.CrossRefPubMedGoogle Scholar
  11. Engel K, Schultz H, Martin F, Kotlyarov A, Plath K, Hahn M, Heinemann U, Gaestel M. Constitutive activation of mitogen-activated protein kinase-activated protein kinase 2 by mutation of phosphorylation sites and an A-helix motif. J Biol Chem. 1995;270:27213–21.CrossRefPubMedGoogle Scholar
  12. Enslen H, Raingeaud J, Davis RJ. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem. 1998;273:1741–8.CrossRefPubMedGoogle Scholar
  13. Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 2011;30:1536–48.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gavin AC, Nebreda AR. A MAP kinase docking site is required for phosphorylation and activation of p90(rsk)/MAPKAP kinase-1. Curr Biol. 1999;9:281–4.CrossRefPubMedGoogle Scholar
  15. Goedert M, Cuenda A, Craxton M, Jakes R, Cohen P. Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBO J. 1997;16:3563–71.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Goldsmith EJ. Three-dimensional docking in the MAPK p38alpha. Sci Signal. 2011;4:pe47.CrossRefPubMedGoogle Scholar
  17. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Substrate and docking interactions in serine/threonine protein kinases. Chem Rev. 2007;107:5065–81.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Guo YL, Kang B, Han J, Williamson JR. p38beta MAP kinase protects rat mesangial cells from TNF-alpha-induced apoptosis. J Cell Biochem. 2001;82:556–65.CrossRefPubMedGoogle Scholar
  19. Haq R, Brenton JD, Takahashi M, Finan D, Finkielsztein A, Damaraju S, Rottapel R, Zanke B. Constitutive p38HOG mitogen-activated protein kinase activation induces permanent cell cycle arrest and senescence. Cancer Res. 2002;62:5076–82.PubMedGoogle Scholar
  20. Hsieh CC, Papaconstantinou J. The effect of aging on p38 signaling pathway activity in the mouse liver and in response to ROS generated by 3-nitropropionic acid. Mech Ageing Dev. 2002;123:1423–35.CrossRefPubMedGoogle Scholar
  21. Hsieh CC, Papaconstantinou J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J. 2006;20:259–68.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hsieh CC, Rosenblatt JI, Papaconstantinou J. Age-associated changes in SAPK/JNK and p38 MAPK signaling in response to the generation of ROS by 3-nitropropionic acid. Mech Ageing Dev. 2003;124:733–46.CrossRefPubMedGoogle Scholar
  23. Humphreys JM, Piala AT, Akella R, He H, Goldsmith EJ. Precisely ordered phosphorylation reactions in the p38 mitogen-activated protein (MAP) kinase cascade. J Biol Chem. 2013;288:23322–30.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hutter D, Chen P, Barnes J, Liu Y. The carboxyterminal domains of MKP-1 and MKP-2 have inhibitory effects on their phosphtase activity. Mol Cell Biochem. 2002;233:107–17.CrossRefPubMedGoogle Scholar
  25. Iwasa H, Han J, Ishikawa F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells. 2003;8:131–44.CrossRefPubMedGoogle Scholar
  26. Jeong HJ, Lee HJ, Vuong TA, Choi KS, Choi D, Koo SH, Cho SC, Cho H, Kang JS. Prmt7 deficiency causes reduced skeletal muscle oxidative metabolism and age-related obesity. Diabetes. 2016;65:1868–82.CrossRefPubMedGoogle Scholar
  27. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem. 1996;271:17920–6.CrossRefPubMedGoogle Scholar
  28. Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L, Di Padova F, Ulevitch RJ, Han J. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J Biol Chem. 1997;272:30122–8.CrossRefPubMedGoogle Scholar
  29. Keyse SM. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol. 2000;12:186–92.CrossRefPubMedGoogle Scholar
  30. Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan MW, et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science. 2002;297:623–6.CrossRefPubMedGoogle Scholar
  31. Kompa AR, See F, Lewis DA, Adrahtas A, Cantwell DM, Wang BH, Krum H. Long-term but not short-term p38 mitogen-activated protein kinase inhibition improves cardiac function and reduces cardiac remodeling post-myocardial infarction. J Pharmacol Exp Ther. 2008;325:741–50.CrossRefPubMedGoogle Scholar
  32. Lechner C, Zahalka MA, Giot JF, Moller NP, Ullrich A. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci U S A. 1996;93:4355–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lee JC, Kassis S, Kumar S, Badger A, Adams JL. p38 mitogen-activated protein kinase inhibitors – mechanisms and therapeutic potentials. Pharmacol Ther. 1999;82:389–97.CrossRefPubMedGoogle Scholar
  34. Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, Reid MB. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 2005;19:362–70.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Mertens S, Craxton M, Goedert M. SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett. 1996;383:273–6.CrossRefPubMedGoogle Scholar
  36. Muda M, Theodosiou A, Gillieron C, Smith A, Chabert C, Camps M, Boschert U, Rodrigues N, Davies K, Ashworth A, et al. The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity. J Biol Chem. 1998;273:9323–9.CrossRefPubMedGoogle Scholar
  37. Munoz L, Ammit AJ. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology. 2010;58:561–8.CrossRefPubMedGoogle Scholar
  38. Munoz L, Ralay Ranaivo H, Roy SM, Hu W, Craft JM, McNamara LK, Chico LW, Van Eldik LJ, Watterson DM. A novel p38 alpha MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer’s disease mouse model. J Neuroinflammation. 2007;4:21.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000;12:1–13.CrossRefPubMedGoogle Scholar
  40. Papaconstantinou J, Hsieh CC. Activation of senescence and aging characteristics by mitochondrially generated ROS: how are they linked? Cell Cycle. 2010;9:3831–3.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Papaconstantinou J, Wang CZ, Zhang M, Yang S, Deford J, Bulavin DV, Ansari NH. Attenuation of p38alpha MAPK stress response signaling delays the in vivo aging of skeletal muscle myofibers and progenitor cells. Aging. 2015;7:718–33.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Park JM, Greten FR, Li ZW, Karin M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science. 2002;297:2048–51.CrossRefPubMedGoogle Scholar
  43. Peifer C, Abadleh M, Bischof J, Hauser D, Schattel V, Hirner H, Knippschild U, Laufer S. 3,4-Diaryl-isoxazoles and -imidazoles as potent dual inhibitors of p38alpha mitogen activated protein kinase and casein kinase 1delta. J Med Chem. 2009;52:7618–30.CrossRefGoogle Scholar
  44. Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P, Baeza-Raja B, Jardi M, Bosch-Comas A, Esteller M, et al. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J. 2007;26:1245–56.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Piala AT, Humphreys JM, Goldsmith EJ. MAP kinase modules: the excursion model and the steps that count. Biophys J. 2014;107:2006–15.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Sabio G, Arthur JS, Kuma Y, Peggie M, Carr J, Murray-Tait V, Centeno F, Goedert M, Morrice NA, Cuenda A. p38gamma regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J. 2005;24:1134–45.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Saurin AT, Martin JL, Heads RJ, Foley C, Mockridge JW, Wright MJ, Wang Y, Marber MS. The role of differential activation of p38-mitogen-activated protein kinase in preconditioned ventricular myocytes. FASEB J. 2000;14:2237–46.CrossRefPubMedGoogle Scholar
  48. Stein B, Yang MX, Young DB, Janknecht R, Hunter T, Murray BW, Barbosa MS. p38-2, a novel mitogen-activated protein kinase with distinct properties. J Biol Chem. 1997;272:19509–17.CrossRefPubMedGoogle Scholar
  49. Suh Y. Age-specific changes in expression, activity, and activation of the c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinases by methyl methanesulfonate in rats. Mech Ageing Dev. 2001;122:1797–811.CrossRefPubMedGoogle Scholar
  50. Sy JC, Seshadri G, Yang SC, Brown M, Oh T, Dikalov S, Murthy N, Davis ME. Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nat Mater. 2008;7:863–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Tanoue T, Maeda R, Adachi M, Nishida E. Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions. EMBO J. 2001;20:466–79.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Wang Y, Huang S, Sah VP, Ross Jr J, Brown JH, Han J, Chien KR. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 1998;273:2161–8.CrossRefGoogle Scholar
  53. Wang ZC, Lu H, Zhou Q, Yu SM, Mao YL, Zhang HJ, Zhang PC, Yan WJ. MiR-451 inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion in rheumatoid arthritis through mediating p38MAPK signaling pathway. Int J Clin Exp Pathol. 2015;8:14562–7.PubMedPubMedCentralGoogle Scholar
  54. Wei YH, Lu CY, Lee HC, Pang CY, Ma YS. Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann N Y Acad Sci. 1998;854:155–70.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Wong ES, Le Guezennec X, Demidov ON, Marshall NT, Wang ST, Krishnamurthy J, Sharpless NE, Dunn NR, Bulavin DV. p38MAPK controls expression of multiple cell cycle inhibitors and islet proliferation with advancing age. Dev Cell. 2009;17:142–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Yang SH, Whitmarsh AJ, Davis RJ, Sharrocks AD. Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J. 1998;17:1740–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Yang SH, Galanis A, Sharrocks AD. Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol. 1999;19:4028–38.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Zer C, Sachs G, Shin JM. Identification of genomic targets downstream of p38 mitogen-activated protein kinase pathway mediating tumor necrosis factor-alpha signaling. Physiol Genomics. 2007;31:343–51.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Zhou B, Wu L, Shen K, Zhang J, Lawrence DS, Zhang ZY. Multiple regions of MAP kinase phosphatase 3 are involved in its recognition and activation by ERK2. J Biol Chem. 2001;276:6506–15.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zhou T, Sun L, Humphreys J, Goldsmith EJ. Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure. 2006;14:1011–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • John Papaconstantinou
    • 1
    • 2
  • Ching-Chyuan Hsieh
    • 2
  • James H. DeFord
    • 2
  1. 1.Department of Human Biological Chemistry and GeneticsThe University of Texas Medical BranchGalvestonUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonUSA