Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Caspase Family

  • Alexandre Desroches
  • Dave Boucher
  • Jean-Bernard Denault
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_176

Introduction

The importance of peptidases in cell signaling is well established. Unlike many pathways controlled by phosphorylation, glycosylation, ubiquitination, or other types of post-translational modifications, steps governed by proteases are essentially irreversible because there is no efficacious mechanism for peptide bond ligation. This chapter presents the peptidase family of caspases, which performs limited proteolysis on a wide range of substrates with molecular consequences ranging from inactivation to gain-of-function to accelerated degradation of their targets. It is important to emphasize that caspases are signaling peptidases and not degrading enzymes akin to lysosomal cathepsins or digestive enzymes. The caspases that are principally implicated in inflammation and apoptosis will be the focus of this chapter; we will not discuss the roles of caspase 14.

In 1842, Karl Christoph Vogt, a German scientist, recognized the presence of cell death during the neuronal...

This is a preview of subscription content, log in to check access.

References

  1. Agard NJ, Maltby D, Wells JA. Inflammatory stimuli regulate caspase substrate profiles. Mol Cell Proteomics. 2010;9:880–93.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J. 2004;23:3175–85.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Best SM. Viral subversion of apoptotic enzymes: escape from death row. Annu Rev Microbiol. 2008;62:171–92.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Black RA, Kronheim SR, Merriam JE, March CJ, Hopp TP. A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem. 1989;264:5323–6.PubMedPubMedCentralGoogle Scholar
  5. Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003;15:725–31.PubMedCrossRefGoogle Scholar
  6. Boucher D, Blais V, Denault JB. Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. Proc Natl Acad Sci U S A. 2012;109:5669–74.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bratton SB, Salvesen GS. Regulation of the Apaf-1-caspase-9 apoptosome. J Cell Sci. 2010;123:3209–14.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Broz P. Immunology: caspase target drives pyroptosis. Nature. 2015;526:642–3.PubMedCrossRefGoogle Scholar
  9. Bryant C, Fitzgerald KA. Molecular mechanisms involved in inflammasome activation. Trends Cell Biol. 2009;19:455–64.PubMedCrossRefGoogle Scholar
  10. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137:1112–23.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dorfleutner A, Chu L, Stehlik C. Inhibiting the inflammasome: one domain at a time. Immunol Rev. 2015;265:205–16.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Faherty CS, Maurelli AT. Staying alive: bacterial inhibition of apoptosis during infection. Trends Microbiol. 2008;16:173–80.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J. 2004a;384:201–32.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gray DC, Mahrus S, Wells JA. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell. 2010;142:637–46.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J. 2009a;23:1625–37.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hill ME, MacPherson DJ, Wu P, Julien O, Wells JA, Hardy JA. Reprogramming caspase-7 specificity by regio-specific mutations and selection provides alternate solutions for substrate recognition. ACS Chem Biol. 2016;11:1603–12.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, et al. Structural and biochemical basis for induced self-propagation of NLRC4. Science. 2015;350:399–404.PubMedCrossRefGoogle Scholar
  18. Hymowitz SG, Dixit VM. Unleashing cell death: the Fas-FADD complex. Nat Struct Mol Biol. 2010;17:1289–90.PubMedCrossRefGoogle Scholar
  19. Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265:130–42.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DC, et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature. 2009;460:1035–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Julien O, Zhuang M, Wiita AP, O’Donoghue AJ, Knudsen GM, Craik CS, et al. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A. 2016;113:E2001–10.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kawadler H, Gantz MA, Riley JL, Yang X. The paracaspase MALT1 controls caspase-8 activation during lymphocyte proliferation. Mol Cell. 2008;31:415–21.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kook S, Zhan X, Cleghorn WM, Benovic JL, Gurevich VV, Gurevich EV. Caspase-cleaved arrestin-2 and BID cooperatively facilitate cytochrome C release and cell death. Cell Death Differ. 2014;21:172–84.PubMedCrossRefGoogle Scholar
  24. Kurokawa M, Kornbluth S. Caspases and kinases in a death grip. Cell. 2009;138:838–54.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Lamkanfi M. Emerging inflammasome effector mechanisms. Nat Rev Immunol. 2011;11:213–20.PubMedCrossRefGoogle Scholar
  26. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014a;157:1013–22.PubMedCrossRefGoogle Scholar
  27. Lamkanfi M, Kanneganti TD, Van Damme P, Vanden Berghe T, Vanoverberghe I, Vandekerckhove J, et al. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics. 2008;7:2350–63.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Larsen BD, Rampalli S, Burns LE, Brunette S, Dilworth FJ, Megeney LA. Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc Natl Acad Sci U S A. 2010;107:4230–5.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lu A, Wu H. Structural mechanisms of inflammasome assembly. FEBS J. 2015;282:435–44.PubMedCrossRefGoogle Scholar
  30. Luthi AU, Martin SJ. The CASBAH: a searchable database of caspase substrates. Cell Death Differ. 2007;14:641–50.PubMedCrossRefGoogle Scholar
  31. Mace PD, Riedl SJ. Molecular cell death platforms and assemblies. Curr Opin Cell Biol. 2010a;22:828–36.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Malladi S, Challa-Malladi M, Fearnhead HO, Bratton SB. The Apaf-1*procaspase-9 apoptosome complex functions as a proteolytic-based molecular timer. EMBO J. 2009;28:1916–25.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.PubMedCrossRefGoogle Scholar
  34. Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 2007;14:10–22.PubMedCrossRefGoogle Scholar
  35. Newton K, Manning G. Necroptosis and inflammation. Annu Rev Biochem. 2016;85:743–63.PubMedCrossRefGoogle Scholar
  36. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 2011;471:363–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Oberst A, Pop C, Tremblay AG, Blais V, Denault JB, Salvesen GS, et al. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J Biol Chem. 2010;285:16632–42.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Oehm A, Behrmann I, Falk W, Pawlita M, Maier G, Klas C, et al. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J Biol Chem. 1992;267:10709–15.PubMedPubMedCentralGoogle Scholar
  39. Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annual Rev Immunol. 2007;25:561–86.CrossRefGoogle Scholar
  40. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311–20.PubMedCrossRefGoogle Scholar
  41. Pop C, Fitzgerald P, Green DR, Salvesen GS. Role of proteolysis in caspase-8 activation and stabilization. Biochemistry. 2007;46:4398–407.PubMedCrossRefGoogle Scholar
  42. Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA, Vajjhala PR, et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 2013;20:1149–60.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Salvesen GS, Dixit VM. Caspase activation: the induced-proximity model. Proc Natl Acad Sci U S A. 1999;96:10964–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Sanders MG, Parsons MJ, Howard AG, Liu J, Fassio SR, Martinez JA, et al. Single-cell imaging of inflammatory caspase dimerization reveals differential recruitment to inflammasomes. Cell Death Disease. 2015;6:e1813.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–32.CrossRefGoogle Scholar
  46. Scott FL, Denault JB, Riedl SJ, Shin H, Renatus M, Salvesen GS. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J. 2005;24:645–55.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Scott FL, Fuchs GJ, Boyd SE, Denault JB, Hawkins CJ, Dequiedt F, et al. Caspase-8 cleaves histone deacetylase 7 and abolishes its transcription repressor function. J Biol Chem. 2008;283:19499–510.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Seaman JE, Julien O, Lee PS, Rettenmaier TJ, Thomsen ND, Wells JA. Cacidases: caspases can cleave after aspartate, glutamate and phosphoserine residues. Cell Death Differ. 2016;23:1717–26.CrossRefGoogle Scholar
  49. Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science. 2014;344:1164–8.PubMedCrossRefGoogle Scholar
  50. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514:187–92.PubMedCrossRefGoogle Scholar
  51. Shikama Y, Yamada M, Miyashita T. Caspase-8 and caspase-10 activate NF-kappaB through RIP, NIK and IKKalpha kinases. Eur J Immunol. 2003;33:1998–2006.PubMedCrossRefGoogle Scholar
  52. Stennicke HR, Renatus M, Meldal M, Salvesen GS. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem J. 2000;350:563–8.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science. 2013;341:403–6.PubMedCrossRefGoogle Scholar
  54. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Biol. 2010a;11:621–32.CrossRefGoogle Scholar
  55. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature. 1997;386:517–21.PubMedCrossRefGoogle Scholar
  56. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997;272:17907–11.PubMedCrossRefGoogle Scholar
  57. Timmer JC, Salvesen GS. Caspase substrates. Cell Death Differ. 2007;14:66–72.PubMedCrossRefGoogle Scholar
  58. Vakifahmetoglu-Norberg H, Zhivotovsky B. The unpredictable caspase-2: what can it do? Trends Cell Biol. 2010;20:150–9.PubMedCrossRefGoogle Scholar
  59. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014a;15:135–47.PubMedCrossRefGoogle Scholar
  60. Varfolomeev E, Maecker H, Sharp D, Lawrence D, Renz M, Vucic D, et al. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem. 2005;280:40599–608.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Wachmann K, Pop C, van Raam BJ, Drag M, Mace PD, Snipas SJ, et al. Activation and specificity of human caspase-10. Biochemistry. 2010;49:8307–15.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Wajant H, Scheurich P. Tumor necrosis factor receptor-associated factor (TRAF) 2 and its role in TNF signaling. Int J Biochem Cell Biol. 2001;33:19–32.PubMedCrossRefGoogle Scholar
  63. Wang XJ, Cao Q, Liu X, Wang KT, Mi W, Zhang Y, et al. Crystal structures of human caspase 6 reveal a new mechanism for intramolecular cleavage self-activation. EMBO Rep. 2010;11:841–7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Yang D, He Y, Munoz-Planillo R, Liu Q, Nunez G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity. 2015;43:923–32.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Yi CH, Yuan J. The Jekyll and Hyde functions of caspases. Dev Cell. 2009;16:21–34.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Yu JW, Jeffrey PD, Shi Y. Mechanism of procaspase-8 activation by c-FLIPL. Proc Natl Acad Sci U S A. 2009;106:8169–74.PubMedPubMedCentralCrossRefGoogle Scholar

Suggested Reading

  1. Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J. 2004b;384:201–32.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Castedo M, Cidlowski JA, Ciechanover A, Cohen GM, De Laurenzi V, De Maria R, Deshmukh M, Dynlacht BD, El-Deiry WS, Flavell RA, Fulda S, Garrido C, Golstein P, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Jaattela M, Kepp O, Kimchi A, Klionsky DJ, Knight RA, Kornbluth S, Kumar S, Levine B, Lipton SA, Lugli E, Madeo F, Malomi W, Marine JC, Martin SJ, Medema JP, Mehlen P, Melino G, Moll UM, Morselli E, Nagata S, Nicholson DW, Nicotera P, Nunez G, Oren M, Penninger J, Pervaiz S, Peter ME, Piacentini M, Prehn JH, Puthalakath H, Rabinovich GA, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Scorrano L, Simon HU, Steller H, Tschopp J, Tsujimoto Y, Vandenabeele P, Vitale I, Vousden KH, Youle RJ, Yuan J, Zhivotovsky B, Kroemer G. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ. 2009;16:1093–107.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J. 2009b;23:1625–37.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014b;157:1013–22.PubMedCrossRefGoogle Scholar
  5. Mace PD, Riedl SJ. Molecular cell death platforms and assemblies. Curr Opin Cell Biol. 2010b;22:828–36.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010b;11:621–32.CrossRefGoogle Scholar
  7. Vanden Berghe T, Linkermann A, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014b;15:135–47.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alexandre Desroches
    • 1
  • Dave Boucher
    • 2
  • Jean-Bernard Denault
    • 1
  1. 1.Department of Pharmacology and Physiology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeCanada
  2. 2.Institute for Molecular BioscienceUniversity of QueenslandSt LuciaAustralia