Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

NEKs, NIMA-Related Kinases

  • Navdeep SahotaEmail author
  • Sarah Sabir
  • Laura O’Regan
  • Joelle Blot
  • Detina Zalli
  • Joanne Baxter
  • Giancarlo Barone
  • Andrew Fry
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_17


 Nek1;  Nek2;  Nek3;  Nek4;  Nek5;  Nek6;  Nek7;  Nek8;  Nek9/Nercc1;  Nek10;  Nek11

Historical Background

The NIMA-related kinase, or “Nek,” family constitutes approximately 2% of all human kinases. They are related in sequence, as their name suggests, to NIMA (699 residues, 80 kDa), a serine/threonine protein kinase present in the filamentous fungus, Aspergillus nidulans. Ron Morris identified the gene, nimA, through analysis of a temperature-sensitive loss-of-function mutant that was never in mitosis (nim) when cells were incubated at the restrictive temperature (Morris 1975). Loss of NIMA activity led to G2 arrest, while overexpression of NIMA drove cells into a premature mitosis from any point in the cell cycle (Oakley and Morris 1983; Osmani et al. 1988, 1991). Mechanistically, NIMA is likely to regulate multiple aspects of mitotic entry, with evidence that its activity is required for nuclear pore disassembly, relocalization of the master regulator, cdc2-cyclin B, to...

This is a preview of subscription content, log in to check access.


  1. Bahmanyar S, Kaplan DD, Deluca JG, Giddings Jr TH, O’Toole ET, Winey M, Salmon ED, Casey PJ, Nelson WJ, Barth AI. Beta-catenin is a Nek2 substrate involved in centrosome separation. Genes Dev. 2008;22:91–105.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Belham C, Roig J, Caldwell JA, Aoyama Y, Kemp BE, Comb M, Avruch J. A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases. J Biol Chem. 2003;278:34897–909.CrossRefPubMedGoogle Scholar
  3. Bertran MT, Sdelci S, Regué L, Avruch J, Caelles C, Roig J. Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO J. 2011;30:2634–47.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bradley BA, Quarmby LM. A NIMA-related kinase, Cnk2p, regulates both flagellar length and cell size in Chlamydomonas. J Cell Sci. 2005;118:3317–26.CrossRefPubMedGoogle Scholar
  5. Capra M, Nuciforo PG, Confalonieri S, Quarto M, Bianchi M, Nebuloni M, Boldorini R, Pallotti F, Viale G, Gishizky ML, Draetta GF, Di Fiore PP. Frequent alterations in the expression of serine/threonine kinases in human cancers. Cancer Res. 2006;66:8147–54.CrossRefPubMedGoogle Scholar
  6. Chang J, Baloh RH, Milbrandt J. The NIMA-family kinase Nek3 regulates microtubule acetylation in neurons. J Cell Sci. 2009;122:2274–82.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chen Y, Chen CF, Chiang HC, Pena M, Polci R, Wei RL, Edwards RA, Hansel DE, Chen PL, Riley DJ. Mutation of NIMA-related kinase 1 (NEK1) leads to chromosome instability. Mol Cancer. 2011;10:5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Doles J, Hemann MT. Nek4 status differentially alters sensitivity to distinct microtubule poisons. Cancer Res. 2010;70:1033–41.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Eto M, Elliott E, Prickett TD, Brautigan DL. Inhibitor-2 regulates protein phosphatase-1 complexed with NimA-related kinase to induce centrosome separation. J Biol Chem. 2002;277:44013–20.CrossRefPubMedGoogle Scholar
  10. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II B, Kuehl K, Hogue K, Colwill K, Gladwish B, Muskat R, Kinach SL, Adams MF, Moran GB, Morin TT, Figeys D. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol. 2007;3:89.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Faragher AJ, Fry AM. Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol Biol Cell. 2003;14:2876–89.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Fletcher L, Cerniglia GJ, Yen TJ, Muschel RJ. Live cell imaging reveals distinct roles in cell cycle regulation for Nek2A and Nek2B. Biochim Biophys Acta. 2005;1744:89–92.CrossRefPubMedGoogle Scholar
  13. Fry AM. The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene. 2002;21:6184–94.CrossRefPubMedGoogle Scholar
  14. Fry AM, Schultz SJ, Bartek J, Nigg EA. Substrate specificity and cell cycle regulation of the Nek2 protein kinase, a potential human homolog of the mitotic regulator NIMA of Aspergillus nidulans. J Biol Chem. 1995;270:12899–905.CrossRefPubMedGoogle Scholar
  15. Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol. 1998a;141:1563–74.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fry AM, Meraldi P, Nigg EA. A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J. 1998b;17:470–81.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Grallert A, Hagan IM. Schizosaccharomyces pombe NIMA-related kinase, Fin1, regulates spindle formation and an affinity of Polo for the SPB. EMBO J. 2002;21:3096–107.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Grallert A, Krapp A, Bagley S, Simanis V, Hagan IM. Recruitment of NIMA kinase shows that maturation of the S. pombe spindle-pole body occurs over consecutive cell cycles and reveals a role for NIMA in modulating SIN activity. Genes Dev. 2004;18:1007–21.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hames RS, Crookes RE, Straatman KR, Merdes A, Hayes MJ, Faragher AJ, Fry AM. Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1, and localized proteasomal degradation. Mol Biol Cell. 2005;16:1711–24.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hayes MJ, Kimata Y, Wattam SL, Lindon C, Mao G, Yamano H, Fry AM. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nat Cell Biol. 2006;8:607–14.CrossRefPubMedGoogle Scholar
  21. Hayward DG, Fry AM. Nek2 kinase in chromosome instability and cancer. Cancer Lett. 2006;237:155–66.CrossRefPubMedGoogle Scholar
  22. Hayward DG, Newbatt Y, Pickard L, Byrne E, Mao G, Burns S, Sahota NK, Workman P, Collins I, Aherne W, Fry AM. Identification by high-throughput screening of viridin analogs as biochemical and cell-based inhibitors of the cell cycle-regulated Nek2 kinase. J Biomol Screen. 2010;15:918–27.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Helps NR, Luo X, Barker HM, Cohen PT. NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J. 2000;349:509–18.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Holland PM, Milne A, Garka K, Johnson RS, Willis C, Sims JE, Rauch CT, Bird TA, Virca GD. Purification, cloning, and characterization of Nek8, a novel NIMA-related kinase, and its candidate substrate Bicd2. J Biol Chem. 2002;277:16229–40.CrossRefPubMedGoogle Scholar
  25. Jeon YJ, Lee KY, Cho YY, Pugliese A, Kim HG, Jeong CH, Bode AM, Dong Z. Role of NEK6 in tumor promoter-induced transformation in JB6 C141 mouse skin epidermal cells. J Biol Chem. 2010;285:28126–33.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Jin G, Aulabaugh A, Pocas J, Liu H, Kriz R, Sampath D. Development and comparison of nonradioactive in vitro kinase assays for NIMA-related kinase 2. Anal Biochem. 2006;358:59–69.CrossRefPubMedGoogle Scholar
  27. Kim S, Lee K, Rhee K. NEK7 is a centrosomal kinase critical for microtubule nucleation. Biochem Biophys Res Commun. 2007;360:56–62.CrossRefPubMedGoogle Scholar
  28. Kokuryo T, Senga T, Yokoyama Y, Nagino M, Nimura Y, Hamaguchi M. Nek2 as an effective target for inhibition of tumorigenic growth and peritoneal dissemination of cholangiocarcinoma. Cancer Res. 2007;67:9637–42.CrossRefPubMedGoogle Scholar
  29. Laurell E, Beck K, Krupina K, Theerthagiri G, Bodenmiller B, Horvath P, Aebersold R, Antonin W, Kutay U. Phosphorylation of Nup98 by multiple kinases Is crucial for NPC disassembly during mitotic entry. Cell. 2011;144:539–50.CrossRefPubMedGoogle Scholar
  30. Letwin K, Mizzen L, Motro B, Ben-David Y, Bernstein A, Pawson T. A mammalian dual specificity protein kinase, Nek1, is related to the NIMA cell cycle regulator and highly expressed in meiotic germ cells. EMBO J. 1992;11:3521–31.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Liu S, Lu W, Obara T, Kuida S, Lehoczky J, Dewar K, Drummond IA, Beier DR. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development. 2002;129:5839–46.CrossRefPubMedGoogle Scholar
  32. Lu KP, Hunter T. Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell. 1995;81:413–24.CrossRefPubMedGoogle Scholar
  33. Mahjoub MR, Montpetit B, Zhao L, Finst RJ, Goh B, Kim AC, Quarmby LM. The FA2 gene of Chlamydomonas encodes a NIMA family kinase with roles in cell cycle progression and microtubule severing during deflagellation. J Cell Sci. 2002;115:1759–68.PubMedGoogle Scholar
  34. Mahjoub MR, Trapp ML, Quarmby LM. NIMA-related kinases defective in murine models of polycystic kidney diseases localize to primary cilia and centrosomes. J Am Soc Nephrol. 2005;16:3485–9.CrossRefPubMedGoogle Scholar
  35. Mardin BR, Lange C, Baxter JE, Hardy T, Scholz SR, Fry AM, Schiebel E. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat Cell Biol. 2010;12:1166–76.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Melixetian M, Klein DK, Sørensen CS, Helin K. NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol. 2009;11:1247–53.CrossRefPubMedGoogle Scholar
  37. Miller SL, DeMaria JE, Freier DO, Riegel AM, Clevenger CV. Novel association of Vav2 and Nek3 modulates signaling through the human prolactin receptor. Mol Endocrinol. 2005;19:939–49.CrossRefPubMedGoogle Scholar
  38. Miller SL, Antico G, Raghunath PN, Tomaszewski JE, Clevenger CV. Nek3 kinase regulates prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells. Oncogene. 2007;26:4668–78.CrossRefPubMedGoogle Scholar
  39. Moniz LS, Stambolic V. Nek10 mediates G2/M cell cycle arrest and MEK autoactivation in response to UV irradiation. Mol Cell Biol. 2011;31:30–42.CrossRefPubMedGoogle Scholar
  40. Morris N. Mitotic mutants of Aspergillus nidulans. Genet Res. 1975;26:237–54.CrossRefPubMedGoogle Scholar
  41. Nassirpour R, Shao L, Flanagan P, Abrams T, Jallal B, Smeal T, Yin MJ. Nek6 mediates human cancer cell transformation and is a potential cancer therapeutic target. Mol Cancer Res. 2010;8:717–28.CrossRefPubMedGoogle Scholar
  42. Noguchi K, Fukazawa H, Murakami Y, Uehara Y. Nek11, a new member of the NIMA family of kinases, involved in DNA replication and genotoxic stress responses. J Biol Chem. 2002;277:39655–65.CrossRefPubMedGoogle Scholar
  43. Noguchi K, Fukazawa H, Murakami Y, Uehara Y. Nucleolar Nek11 is a novel target of Nek2A in G1/S-arrested cells. J Biol Chem. 2004;279:32716–27.CrossRefPubMedGoogle Scholar
  44. O’Connell MJ, Norbury C, Nurse P. Premature chromatin condensation upon accumulation of NIMA. EMBO J. 1994;13:4926–37.PubMedPubMedCentralCrossRefGoogle Scholar
  45. O’Connell MJ, Krien MJ, Hunter T. Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol. 2003;13:221–8.CrossRefPubMedGoogle Scholar
  46. O’Regan L, Blot J, Fry AM. Mitotic regulation by NIMA-related kinases. Cell Div. 2007;2:25.PubMedPubMedCentralCrossRefGoogle Scholar
  47. O’Regan L, Fry AM. The Nek6 and Nek7 protein kinases are required for robust mitotic spindle formation and cytokinesis. Mol Cell Biol. 2009;29:3975–90.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Oakley BR, Morris NR. A mutation in Aspergillus nidulans that blocks the transition from interphase to prophase. J Cell Biol. 1983;96:1155–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Osmani SA, Pu RT, Morris NR. Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell. 1988;53:237–44.CrossRefPubMedGoogle Scholar
  50. Osmani AH, O’Donnell K, Pu RT, Osmani SA. Activation of the nimA protein kinase plays a unique role during mitosis that cannot be bypassed by absence of the bimE checkpoint. EMBO J. 1991;10:2669–79.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Otto EA, Trapp ML, Schultheiss UT, Helou J, Quarmby LM, Hildebrandt F. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. J Am Soc Nephrol. 2008;19:587–92.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Parker JD, Bradley BA, Mooers AO, Quarmby LM. Phylogenetic analysis of the Neks reveals early diversification of ciliary-cell cycle kinases. PLoS One. 2007;2:e1076.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Polci R, Peng A, Chen PL, Riley DJ, Chen Y. NIMA-related protein kinase 1 is involved early in the ionizing radiation-induced DNA damage response. Cancer Res. 2004;64:8800–3.CrossRefPubMedGoogle Scholar
  54. Pugacheva EN, Golemis EA. The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol. 2005;7:937–46.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Qiu XL, Li G, Wu G, Zhu J, Zhou L, Chen PL, Chamberlin AR, Lee WH. Synthesis and biological evaluation of a series of novel inhibitor of Nek2/Hec1 analogues. J Med Chem. 2009;52:1757–67.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Quarmby LM, Mahjoub MR. Caught Nek-ing: cilia and centrioles. J Cell Sci. 2005;118:5161–9.CrossRefPubMedGoogle Scholar
  57. Rapley J, Nicolas M, Groen A, Regue L, Bertran MT, Caelles C, Avruch J, Roig J. The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation. J Cell Sci. 2008;121:3912–21.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Rellos P, Ivins FJ, Baxter JE, Pike A, Nott TJ, Parkinson DM, Das S, Howell S, Fedorov O, Shen QY, Fry AM, Knapp S, Smerdon SJ. Structure and regulation of the human Nek2 centrosomal kinase. J Biol Chem. 2007;282:6833–42.CrossRefPubMedGoogle Scholar
  59. Richards MW, O’Regan L, Mas-Droux C, Blot JM, Cheung J, Hoelder S, Fry AM, Bayliss R. An autoinhibitory tyrosine motif in the cell-cycle-regulated Nek7 kinase is released through binding of Nek9. Mol Cell. 2009;36:560–70.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Roig J, Mikhailov A, Belham C, Avruch J. Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression. Genes Dev. 2002;16:1640–58.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Roig J, Groen A, Caldwell J, Avruch J. Active Nercc1 protein kinase concentrates at centrosomes early in mitosis and is necessary for proper spindle assembly. Mol Biol Cell. 2005;16:4827–40.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Salem H, Rachmin I, Yissachar N, Cohen S, Amiel A, Haffner R, Lavi L, Motro B. Nek7 kinase targeting leads to early mortality, cytokinesis disturbance and polyploidy. Oncogene. 2010;29:4046–57.CrossRefPubMedGoogle Scholar
  63. Schultz SJ, Fry AM, Sutterlin C, Ried T, Nigg EA. Cell cycle-dependent expression of Nek2, a novel human protein kinase related to the NIMA mitotic regulator of Aspergillus nidulans. Cell Growth Differ. 1994;5:625–35.PubMedGoogle Scholar
  64. Shalom O, Shalva N, Altschuler Y, Motro B. The mammalian Nek1 kinase is involved in primary cilium formation. FEBS Lett. 2008;582:1465–70.CrossRefPubMedGoogle Scholar
  65. Shiba D, Manning DK, Koga H, Beier DR, Yokoyama T. Inv acts as a molecular anchor for Nphp3 and Nek8 in the proximal segment of primary cilia. Cytoskeleton (Hoboken). 2010;67:112–9.PubMedGoogle Scholar
  66. Sohara E, Luo Y, Zhang J, Manning DK, Beier DR, Zhou J. Nek8 regulates the expression and localization of polycystin-1 and polycystin-2. J Am Soc Nephrol. 2008;19:469–76.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Sørensen CS, Melixetian M, Klein DK, Helin K. NEK11: linking CHK1 and CDC25A in DNA damage checkpoint signaling. Cell Cycle. 2010;9:450–5.CrossRefPubMedGoogle Scholar
  68. Surpili MJ, Delben TM, Kobarg J. Identification of proteins that interact with the central coiled-coil region of the human protein kinase NEK1. Biochemistry. 2003;42:15369–76.CrossRefPubMedGoogle Scholar
  69. Suzuki K, Kokuryo T, Senga T, Yokoyama Y, Nagino M, Hamaguchi M. Novel combination treatment for colorectal cancer using Nek2 siRNA and cisplatin. Cancer Sci. 2010;101:1163–9.CrossRefPubMedGoogle Scholar
  70. Tan BC, Lee SC. Nek9, a novel FACT-associated protein, modulates interphase progression. J Biol Chem. 2004;279:9321–30.CrossRefPubMedGoogle Scholar
  71. Tanaka K, Nigg EA. Cloning and characterization of the murine Nek3 protein kinase, a novel member of the NIMA family of putative cell cycle regulators. J Biol Chem. 1999;274:13491–7.CrossRefPubMedGoogle Scholar
  72. Trapp ML, Galtseva A, Manning DK, Beier DR, Rosenblum ND, Quarmby LM. Defects in ciliary localization of Nek8 is associated with cystogenesis. Pediatr Nephrol. 2008;23:377–87.CrossRefPubMedGoogle Scholar
  73. Tsunoda N, Kokuryo T, Oda K, Senga T, Yokoyama Y, Nagino M, Nimura Y, Hamaguchi M. Nek2 as a novel molecular target for the treatment of breast carcinoma. Cancer Sci. 2009;100:111–6.CrossRefPubMedGoogle Scholar
  74. Upadhya P, Birkenmeier EH, Birkenmeier CS, Barker JE. Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice. Proc Natl Acad Sci USA. 2000;97:217–21.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Uto K, Sagata N. Nek2B, a novel maternal form of Nek2 kinase, is essential for the assembly or maintenance of centrosomes in early Xenopus embryos. EMBO J. 2000;19:1816–26.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Vaz Meirelles G, Ferreira Lanza DC, da Silva JC, Santana Bernachi J, Paes Leme AF, Kobarg J. Characterization of hNek6 interactome reveals an important role for its short N-terminal domain and colocalization with proteins at the centrosome. J Proteome Res. 2010;9:6298–316.CrossRefPubMedGoogle Scholar
  77. Vogler C, Homan S, Pung A, Thorpe C, Barker J, Birkenmeier EH, Upadhya P. Clinical and pathologic findings in two new allelic murine models of polycystic kidney disease. J Am Soc Nephrol. 1999;10:2534–9.PubMedGoogle Scholar
  78. Whelligan DK, Solanki S, Taylor D, Thomson DW, Cheung K-M, Boxall K, Mas-Droux C, Barillari C, Burns S, Grummitt CG, Collins I, van Montfort RLM, Aherne GW, Bayliss R, Hoelder S. Aminopyrazine inhibitors binding to an unusual inactive conformation of the mitotic kinase Nek2: SAR and structural characterization. J Med Chem. 2010;53(21):7682–98.PubMedPubMedCentralCrossRefGoogle Scholar
  79. White MC, Quarmby LM. The NIMA-family kinase, Nek1 affects the stability of centrosomes and ciliogenesis. BMC Cell Biol. 2008;9:29.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Wloga D, Camba A, Rogowski K, Manning G, Jerka-Dziadosz M, Gaertig J. Members of the NIMA-related kinase family promote disassembly of cilia by multiple mechanisms. Mol Biol Cell. 2006;17:2799–810.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wu W, Baxter JE, Wattam SL, Hayward DG, Fardilha M, Knebel A, Ford EM, da Cruz e Silva EF, Fry AM. Alternative splicing controls nuclear translocation of the cell cycle-regulated Nek2 kinase. J Biol Chem. 2007;282:26431–40.CrossRefPubMedGoogle Scholar
  82. Wu G, Qiu XL, Zhou L, Zhu J, Chamberlin R, Lau J, Chen PL, Lee WH. Small molecule targeting the Hec1/Nek2 mitotic pathway suppresses tumor cell growth in culture and in animal. Cancer Res. 2008;68:8393–9.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Yin MJ, Shao L, Voehringer D, Smeal T, Jallal B. The serine/threonine kinase Nek6 is required for cell cycle progression through mitosis. J Biol Chem. 2003;278:52454–60.CrossRefPubMedGoogle Scholar
  84. Yissachar N, Salem H, Tennenbaum T, Motro B. Nek7 kinase is enriched at the centrosome, and is required for proper spindle assembly and mitotic progression. FEBS Lett. 2006;580:6489–95.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Navdeep Sahota
    • 1
    Email author
  • Sarah Sabir
    • 1
  • Laura O’Regan
    • 1
  • Joelle Blot
    • 1
  • Detina Zalli
    • 1
  • Joanne Baxter
    • 1
  • Giancarlo Barone
    • 1
  • Andrew Fry
    • 1
  1. 1.Department of BiochemistryUniversity of LeicesterLeicesterUK