Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Salman Tamaddon-Jahromi
  • Venkateswarlu KanamarlapudiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101989


Historical Background

The ADP-ribosylation factor (ARF) family of small GTP-binding proteins are ubiquitously expressed and involved in many cellular events such as cell adhesion, cell migration, neurite outgrowth, cell secretion, endocytosis and exocytosis, and maintenance of the platelet cytoskeleton (D’Souza-Schorey and Chavrier 2006; Ueda et al. 2013; Jang et al. 2016; Urban et al. 2016). In mammals, the ARF family consists of six members (ARFs 1–6) that differ in the localization and function. ARFs 1–5 function at the Golgi, whereas ARF6 regulates cellular events at the plasma membrane (Donaldson and Jackson 2011). ARFs belong to the Ras superfamily of GTPases and therefore act as molecular switches by cycling between inactive GDP-bound and active GTP-bound forms. They depend on Guanine Exchange Factors (GEFs) for activation and GTPase-Activating Proteins (GAPs) for inactivation (Donaldson and...

This is a preview of subscription content, log in to check access.


  1. Brantis-de-Carvalho CE, Maarifi G, Goncalves Boldrin PE, Zanelli CF, Nisole S, Chelbi-Alix MK, et al. MxA interacts with and is modified by the SUMOylation machinery. Experimental cell research. 2015;330:151–63.  https://doi.org/10.1016/j.yexcr.2014.10.020.CrossRefPubMedGoogle Scholar
  2. Cannavo E, Gerrits B, Marra G, Schlapbach R, Jiricny J. Characterization of the interactome of the human MutL homologues MLH1, PMS1, and PMS2. J Biol Chem. 2007;282:2976–86.  https://doi.org/10.1074/jbc.M609989200.CrossRefPubMedGoogle Scholar
  3. Chomphoo S, Mothong W, Sawatpanich T, Kanla P, Sakagami H, Kondo H, et al. Ultrastructural localization of endogenous exchange factor for ARF6 in adrenocortical cells in situ of mice. Acta Histochem Cytochem. 2016;49:83–7.  https://doi.org/10.1267/ahc.16008.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Donaldson JG, Honda A. Localization and function of Arf family GTPases. Biochem Soc Trans. 2005;33:639–42.  https://doi.org/10.1042/bst0330639.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 2011;12:362–75.  https://doi.org/10.1038/nrm3117.CrossRefPubMedPubMedCentralGoogle Scholar
  6. D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nature reviews Molecular cell biology. 2006;7:347–58.  https://doi.org/10.1038/nrm1910.CrossRefPubMedGoogle Scholar
  7. Fukaya M, Ohta S, Hara Y, Tamaki H, Sakagami H. Distinct subcellular localization of alternative splicing variants of EFA6D, a guanine nucleotide exchange factor for Arf6, in the mouse brain. J Comp Neurol. 2016;524:2531–52.  https://doi.org/10.1002/cne.24048.CrossRefPubMedGoogle Scholar
  8. Jang DJ, Jun YW, Shim J, Sim SE, Lee JA, Lim CS, et al. Activation of Aplysia ARF6 induces neurite outgrowth and is sequestered by the overexpression of the PH domain of Aplysia Sec7 proteins. Neurobiol Learn Mem. 2016.  https://doi.org/10.1016/j.nlm.2016.06.017.CrossRefPubMedGoogle Scholar
  9. Jin J, Chou C, Lima M, Zhou D, Zhou X. Systemic sclerosis is a complex disease associated mainly with immune regulatory and inflammatory genes. The Open Rheumatology Journal. 2014;8:29–42.  https://doi.org/10.2174/1874312901408010029.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kanamarlapudi V. Exchange factor EFA6R requires C-terminal targeting to the plasma membrane to promote cytoskeletal rearrangement through the activation of ADP-ribosylation factor 6 (ARF6). J Biol Chem. 2014;289:33378–90.  https://doi.org/10.1074/jbc.M113.534156.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Martin JE, Broen JC, Carmona FD, Teruel M, Simeon CP, Vonk MC, et al. Identification of CSK as a systemic sclerosis genetic risk factor through genome wide association study follow-up. Hum Mol Genet. 2012;21:2825–35.  https://doi.org/10.1093/hmg/dds099.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Mozhui K, Wang X, Chen J, Mulligan MK, Li Z, Ingles J, et al. Genetic regulation of Nrxn1 [corrected] expression: an integrative cross-species analysis of schizophrenia candidate genes. Transl Psychiatry. 2011;1:e25.  https://doi.org/10.1038/tp.2011.24.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Okada R, Yamauchi Y, Hongu T, Funakoshi Y, Ohbayashi N, Hasegawa H, et al. Activation of the small G protein Arf6 by Dynamin2 through guanine nucleotide exchange factors in endocytosis. Sci Rep. 2015;5:14919.  https://doi.org/10.1038/srep14919.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Pils D, Horak P, Gleiss A, Sax C, Fabjani G, Moebus VJ, et al. Five genes from chromosomal band 8p22 are significantly down-regulated in ovarian carcinoma: N33 and EFA6R have a potential impact on overall survival. Cancer. 2005;104:2417–29.  https://doi.org/10.1002/cncr.21538.CrossRefPubMedGoogle Scholar
  15. Sakagami H, Suzuki H, Kamata A, Owada Y, Fukunaga K, Mayanagi H, et al. Distinct spatiotemporal expression of EFA6D, a guanine nucleotide exchange factor for ARF6, among the EFA6 family in mouse brain. Brain Res. 2006;1093:1–11.  https://doi.org/10.1016/j.brainres.2006.02.058.CrossRefPubMedGoogle Scholar
  16. Thomassen M, Tan Q, Kruse TA. Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast cancer research and treatment. 2009;113:239–49.  https://doi.org/10.1007/s10549-008-9927-2.CrossRefPubMedGoogle Scholar
  17. Ueda T, Hanai A, Takei T, Kubo K, Ohgi M, Sakagami H, et al. EFA6 activates Arf6 and participates in its targeting to the Flemming body during cytokinesis. FEBS Lett. 2013;587:1617–23.  https://doi.org/10.1016/j.febslet.2013.03.042.CrossRefPubMedGoogle Scholar
  18. Urban AE, Quick EO, Miller KP, Krcmery J, Simon H-G. Pdlim7 regulates Arf6-dependent actin dynamics and is required for platelet-mediated thrombosis in mice. PLoS ONE. 2016;11:e0164042.  https://doi.org/10.1371/journal.pone.0164042.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Wang Y, Han KJ, Pang XW, Vaughan HA, Qu W, Dong XY, et al. Large scale identification of human hepatocellular carcinoma-associated antigens by autoantibodies. J Immunol. 2002;169:1102–1109.CrossRefPubMedGoogle Scholar
  20. Xie L, Gazin C, Park SM, Zhu LJ, Debily MA, Kittler EL, et al. A synthetic interaction screen identifies factors selectively required for proliferation and TERT transcription in p53-deficient human cancer cells. PLoS Genet. 2012;8:e1003151.  https://doi.org/10.1371/journal.pgen.1003151.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Yoon HY, Kales SC, Luo R, Lipkowitz S, Randazzo PA. ARAP1 association with CIN85 affects epidermal growth factor receptor endocytic trafficking. Biol Cell. 2011;103:171–84.  https://doi.org/10.1042/BC20100154.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Salman Tamaddon-Jahromi
    • 1
  • Venkateswarlu Kanamarlapudi
    • 2
    Email author
  1. 1.Institute of Life Science 1, School of MedicineSwansea UniversitySwanseaUK
  2. 2.Institute of Life Science 1, School of MedicineSwansea UniversitySwanseaUK