Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Septin

  • Manoj B. Menon
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101986

Synonyms

 SEPT1: Septin 1; DIFF6; LARP; PNUTL3; SEP1

 SEPT2: Septin 2; DIFF6; NEDD-5; NEDD5; Pnutl3; hNedd5; KIAA0158

 SEPT3: Septin 3; SEP3; bK250D10.3

 SEPT4: Septin 4; H5; ARTS; MART; SEP4; CE5B3; PNUTL2; hucep-7; BRADEION; hCDCREL-2

 SEPT5: Septin 5; H5; CDCREL; PNUTL1; CDCREL1; CDCREL-1; HCDCREL-1

 SEPT6: Septin 6; KIAA0128; MGC16619; MGC20339; SEP2

 SEPT7: Septin 7; CDC3; CDC10; SEPT7A

 SEPT8: Septin 8; KIAA0202; SEP2

 SEPT9: Septin 9; MSF; MSF1; NAPB; SINT1; PNUTL4; SeptD1; AF17q25; KIAA0991; Ov/Br septin

 SEPT10: Septin 10; FLJ11619; sept1-like

 SEPT11: Septin 11; FLJ10849

 SEPT12: Septin 12; FLJ25410; SPGF10

 SEPT14: Septin 14; FLJ44060

Historical Background

Septins were initially identified in the budding yeast, Saccharomyces cerevisiae, as genes essential for cytoplasmic division (Hartwell 1971; Hartwell et al. 1970). While the isolation and characterization of yeast mutants with defects in cell-cycle control yielded a Nobel Prize for Leland Hartwell, septin mutants which...

This is a preview of subscription content, log in to check access.

References

  1. Abbey M, Hakim C, Anand R, Lafera J, Schambach A, Kispert A, et al. GTPase domain driven dimerization of SEPT7 is dispensable for the critical role of septins in fibroblast cytokinesis. Sci Report. 2016;6:20007.  https://doi.org/10.1038/srep20007. http://www.nature.com/articles/srep20007#supplementary-information.CrossRefGoogle Scholar
  2. Ageta-Ishihara N, Miyata T, Ohshima C, Watanabe M, Sato Y, Hamamura Y, et al. Septins promote dendrite and axon development by negatively regulating microtubule stability via HDAC6-mediated deacetylation. Nat Commun. 2013;4:2532.  https://doi.org/10.1038/ncomms3532.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Angelis D, Spiliotis ET. Septin mutations in human cancers. Front Cell Dev Biol. 2016;4:122.  https://doi.org/10.3389/fcell.2016.00122.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brand F, Schumacher S, Kant S, Menon MB, Simon R, Turgeon B, et al. The extracellular signal-regulated kinase 3 (mitogen-activated protein kinase 6 [MAPK6])-MAPK-activated protein kinase 5 signaling complex regulates septin function and dendrite morphology. Mol Cell Biol. 2012;32:2467–78.  https://doi.org/10.1128/MCB.06633-11. [pii] MCB.06633-11.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bridges AA, Jentzsch MS, Oakes PW, Occhipinti P, Gladfelter AS. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. J Cell Biol. 2016;213:23–32.  https://doi.org/10.1083/jcb.201512029.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brown SD, Moore MW. The international mouse phenotyping consortium: past and future perspectives on mouse phenotyping. Mamm Genome. 2012;23:632–40.  https://doi.org/10.1007/s00335-012-9427-x.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Byers B, Goetsch L. A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol. 1976;69:717–21.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Calvo F, Ranftl R, Hooper S, Farrugia AJ, Moeendarbary E, Bruckbauer A, et al. Cdc42EP3/BORG2 and septin network enables mechano-transduction and the emergence of cancer-associated fibroblasts. Cell Rep. 2015;13:2699–714.  https://doi.org/10.1016/j.celrep.2015.11.052.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cerveira N, Bizarro S, Teixeira MR. MLL-SEPTIN gene fusions in hematological malignancies. Biol Chem. 2011;392:713–24.  https://doi.org/10.1515/BC.2011.072.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chahwan R, Gravel S, Matsusaka T, Jackson SP. Dma/RNF8 proteins are evolutionarily conserved E3 ubiquitin ligases that target septins. Cell Cycle. 2013;12:1000–8.  https://doi.org/10.4161/cc.23947.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Choi P, Snyder H, Petrucelli L, Theisler C, Chong M, Zhang Y, et al. SEPT5_v2 is a parkin-binding protein. Brain Res Mol Brain Res. 2003;117:179–89.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Deb BK, Hasan G. Regulation of store-operated Ca2+ entry by septins. Front Cell Dev Biol. 2016;4:142.  https://doi.org/10.3389/fcell.2016.00142.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Deb BK, Pathak T, Hasan G. Store-independent modulation of Ca(2+) entry through Orai by Septin 7. Nat Commun. 2016;7.  https://doi.org/10.1038/ncomms11751.
  14. Dent J, Kato K, Peng XR, Martinez C, Cattaneo M, Poujol C, et al. A prototypic platelet septin and its participation in secretion. Proc Natl Acad Sci USA. 2002;99:3064–9.  https://doi.org/10.1073/pnas.05271519999/5/3064.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397–407.  https://doi.org/10.1242/jcs.162206.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Estey MP, Di Ciano-Oliveira C, Froese CD, Bejide MT, Trimble WS. Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. J Cell Biol. 2010;191:741–9.  https://doi.org/10.1083/jcb.201006031.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Estey MP, Di Ciano-Oliveira C, Froese CD, Fung KY, Steels JD, Litchfield DW, et al. Mitotic regulation of SEPT9 protein by cyclin-dependent kinase 1 (Cdk1) and Pin1 protein is important for the completion of cytokinesis. J Biol Chem. 2013;288:30075–86.  https://doi.org/10.1074/jbc.M113.474932.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ewers H, Tada T, Petersen JD, Racz B, Sheng M, Choquet D. A septin-dependent diffusion barrier at dendritic spine necks. PLoS One. 2014;9:e113916.  https://doi.org/10.1371/journal.pone.0113916.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Founounou N, Loyer N, Le Borgne R. Septins regulate the contractility of the actomyosin ring to enable adherens junction remodeling during cytokinesis of epithelial cells. Developmental cell. 2013;24:242–55.  https://doi.org/10.1016/j.devcel.2013.01.008.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Frazier JA, Wong ML, Longtine MS, Pringle JR, Mann M, Mitchison TJ, et al. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J Cell Biol. 1998;143:737–49.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fuchtbauer A, Lassen LB, Jensen AB, Howard J, Quiroga Ade S, Warming S, et al. Septin9 is involved in septin filament formation and cellular stability. Biol Chem. 2011;392:769–77.  https://doi.org/10.1515/BC.2011.088.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fujishima K, Kiyonari H, Kurisu J, Hirano T, Kengaku M. Targeted disruption of Sept3, a heteromeric assembly partner of Sept5 and Sept7 in axons, has no effect on developing CNS neurons. J Neurochem. 2007;102:77–92.  https://doi.org/10.1111/j.1471-4159.2007.04478.x.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gilden JK, Peck S, Chen YC, Krummel MF. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. J Cell Biol. 2012;196:103–14.  https://doi.org/10.1083/jcb.201105127.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Guillot C, Lecuit T. Adhesion disengagement uncouples intrinsic and extrinsic forces to drive cytokinesis in epithelial tissues. Dev Cell. 2013;24:227–41.  https://doi.org/10.1016/j.devcel.2013.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hartwell LH. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res. 1971;69:265–76.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hartwell LH, Culotti J, Reid B. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci USA. 1970;66:352–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hernandez-Rodriguez Y, Momany M. Posttranslational modifications and assembly of septin heteropolymers and higher-order structures. Curr Opin Microbiol. 2012;15:660–8.  https://doi.org/10.1016/j.mib.2012.09.007.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science. 2010;329:436–9.  https://doi.org/10.1126/science.1191054.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Huang YW, Yan M, Collins RF, Diciccio JE, Grinstein S, Trimble WS. Mammalian septins are required for phagosome formation. Mol Biol Cell. 2008;19:1717–26.  https://doi.org/10.1091/mbc.E07-07-0641.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, et al. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell. 2005;8:343–52.  https://doi.org/10.1016/j.devcel.2004.12.005.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Iwaisako K, Hatano E, Taura K, Nakajima A, Tada M, Seo S, et al. Loss of Sept4 exacerbates liver fibrosis through the dysregulation of hepatic stellate cells. J Hepatol. 2008;49:768–78.  https://doi.org/10.1016/j.jhep.2008.05.026.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Joberty G, Perlungher RR, Sheffield PJ, Kinoshita M, Noda M, Haystead T, et al. Borg proteins control septin organization and are negatively regulated by Cdc42. Nat Cell Biol. 2001;3:861–6.  https://doi.org/10.1038/ncb1001-861ncb1001-861.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kim SK, Shindo A, Park TJ, Oh EC, Ghosh S, Gray RS, et al. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science. 2010;329:1337–40.  https://doi.org/10.1126/science.1191184.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kim MS, Froese CD, Estey MP, Trimble WS. SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J Cell Biol. 2011;195:815–26.  https://doi.org/10.1083/jcb.201106131. [pii] jcb.201106131.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kinoshita M. The septins. Genome Biol. 2003;4:236.  https://doi.org/10.1186/gb-2003-4-11-236.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kinoshita M. Insight into septin functions from mouse models. The septins. Chichester: Wiley; 2008. p. 319–36.Google Scholar
  37. Kinoshita M, Kumar S, Mizoguchi A, Ide C, Kinoshita A, Haraguchi T, et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 1997;11:1535–47.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell. 2005;8:353–64.  https://doi.org/10.1016/j.devcel.2005.01.021.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lin YH, Lin YM, Wang YY, Yu IS, Lin YW, Wang YH, et al. The expression level of septin12 is critical for spermiogenesis. Am J Pathol. 2009;174:1857–68.  https://doi.org/10.2353/ajpath.2009.080955.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu M, Shen S, Chen F, Yu W, Yu L. Linking the septin expression with carcinogenesis. Mol Biol Rep. 2010;37:3601–8.  https://doi.org/10.1007/s11033-010-0009-2.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Maddox AS, Lewellyn L, Desai A, Oegema K. Anillin and the septins promote asymmetric ingression of the cytokinetic furrow. Dev Cell. 2007;12:827–35.  https://doi.org/10.1016/j.devcel.2007.02.018.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mavrakis M, Azou-Gros Y, Tsai FC, Alvarado J, Bertin A, Iv F, et al. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol. 2014;16:322–34.  https://doi.org/10.1038/ncb2921.CrossRefPubMedPubMedCentralGoogle Scholar
  43. McMurray MA, Bertin A, Garcia 3rd G, Lam L, Nogales E, Thorner J. Septin filament formation is essential in budding yeast. Dev Cell. 2011;20:540–9.  https://doi.org/10.1016/j.devcel.2011.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Menon MB, Gaestel M. Sep(t)arate or not – how some cells take septin-independent routes through cytokinesis. J Cell Sci. 2015;128:1877–86.  https://doi.org/10.1242/jcs.164830.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Menon MB, Sawada A, Chaturvedi A, Mishra P, Schuster-Gossler K, Galla M, et al. Genetic deletion of SEPT7 reveals a cell type-specific role of septins in microtubule destabilization for the completion of cytokinesis. PLoS Genet. 2014;10:e1004558.  https://doi.org/10.1371/journal.pgen.1004558.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mostowy S, Cossart P. Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol. 2012;13:183–94.  https://doi.org/10.1038/nrm3284. [pii] nrm3284.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mostowy S, Bonazzi M, Hamon MA, Tham TN, Mallet A, Lelek M, et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe. 2010;8:433–44.  https://doi.org/10.1016/j.chom.2010.10.009. [pii] S1931-3128(10)00346-X.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mujal AM, Gilden JK, Gerard A, Kinoshita M, Krummel MF. A septin requirement differentiates autonomous and contact-facilitated T cell proliferation. Nat Immunol. 2015.  https://doi.org/10.1038/ni.3330.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nagata K, Kawajiri A, Matsui S, Takagishi M, Shiromizu T, Saitoh N, et al. Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J Biol Chem. 2003;278:18538–43.  https://doi.org/10.1074/jbc.M205246200.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Neufeld TP, Rubin GM. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell. 1994;77:371–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ono R, Ihara M, Nakajima H, Ozaki K, Kataoka-Fujiwara Y, Taki T, et al. Disruption of Sept6, a fusion partner gene of MLL, does not affect ontogeny, leukemogenesis induced by MLL-SEPT6, or phenotype induced by the loss of Sept4. Mol Cell Biol. 2005;25:10965–78.  https://doi.org/10.1128/MCB.25.24.10965-10978.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pagliuso A, Tham TN, Stevens JK, Lagache T, Persson R, Salles A, et al. A role for septin 2 in Drp1-mediated mitochondrial fission. EMBO Rep. 2016;17:858–73.  https://doi.org/10.15252/embr.201541612.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Patzig J, Erwig MS, Tenzer S, Kusch K, Dibaj P, Mobius W, et al. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. Elife. 2016;5.  https://doi.org/10.7554/eLife.17119.
  54. Peng XR, Jia Z, Zhang Y, Ware J, Trimble WS. The septin CDCrel-1 is dispensable for normal development and neurotransmitter release. Mol Cell Biol. 2002;22:378–87.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Perez AM, Finnigan GC, Roelants FM, Thorner J. Septin-associated protein kinases in the yeast Saccharomyces cerevisiae. Front Cell Dev Biol. 2016;4:119.  https://doi.org/10.3389/fcell.2016.00119.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Periquet M, Corti O, Jacquier S, Brice A. Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. J Neurochem. 2005;95:1259–76.  https://doi.org/10.1111/j.1471-4159.2005.03442.x.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pous C, Klipfel L, Baillet A. Cancer-related functions and subcellular localizations of septins. Front Cell Dev Biol. 2016;4:126.  https://doi.org/10.3389/fcell.2016.00126.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pringle JR. Origins and development of the septin field. In: The septins. Chicester: Wiley; 2008. p. 5–34.CrossRefGoogle Scholar
  59. Qi M, Yu W, Liu S, Jia H, Tang L, Shen M, et al. Septin1, a new interaction partner for human serine/threonine kinase aurora-B. Biochem Biophys Res Commun. 2005;336:994–1000.  https://doi.org/10.1016/j.bbrc.2005.06.212.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Röseler S, Bläser S, Bartsch I, Rempp H, Bauer H, Lieber M, et al. SEPT11, a novel platelet septin partners with the platelet septin SEPT5. Blood. 2005;106:3945.Google Scholar
  61. Roseler S, Sandrock K, Bartsch I, Busse A, Omran H, Loges NT, et al. Lethal phenotype of mice carrying a Sept11 null mutation. Biol Chem. 2011;392:779–81.  https://doi.org/10.1515/BC.2011.093.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sanders SL, Field CM. Cell division. Septins in common? Curr Biol. 1994;4:907–10.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Sandrock K, Bartsch I, Blaser S, Busse A, Busse E, Zieger B. Characterization of human septin interactions. Biol Chem. 2011;392:751–61.  https://doi.org/10.1515/BC.2011.081.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Scholz R, Imami K, Scott NE, Trimble WS, Foster LJ, Finlay BB. Novel host proteins and signaling pathways in enteropathogenic E. coli pathogenesis identified by global phosphoproteome analysis. Mol Cell Proteomics. 2015;14:1927–45.  https://doi.org/10.1074/mcp.M114.046847.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sellin ME, Sandblad L, Stenmark S, Gullberg M. Deciphering the rules governing assembly order of mammalian septin complexes. Mol Biol Cell. 2011;22:3152–64.  https://doi.org/10.1091/mbc.E11-03-0253.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sharma S, Quintana A, Findlay GM, Mettlen M, Baust B, Jain M, et al. An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca entry. Nature. 2013:499(7457):238-242.  https://doi.org/10.1038/nature12229., [pii] nature12229.PubMedPubMedCentralCrossRefGoogle Scholar
  67. She YM, Huang YW, Zhang L, Trimble WS. Septin 2 phosphorylation: theoretical and mass spectrometric evidence for the existence of a single phosphorylation site in vivo. Rapid Commun Mass Spectrom. 2004;18:1123–30.  https://doi.org/10.1002/rcm.1453.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Shindo A, Wallingford JB. PCP and septins compartmentalize cortical actomyosin to direct collective cell movement. Science. 2014;343:649–52.  https://doi.org/10.1126/science.1243126.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shiryaev A, Kostenko S, Dumitriu G, Moens U. Septin 8 is an interaction partner and in vitro substrate of MK5. World J Biol Chem. 2012;3:98–109.  https://doi.org/10.4331/wjbc.v3.i5.98.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sirajuddin M, Farkasovsky M, Hauer F, Kuhlmann D, Macara IG, Weyand M, et al. Structural insight into filament formation by mammalian septins. Nature. 2007;449:311–5.  https://doi.org/10.1038/nature06052.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sirajuddin M, Farkasovsky M, Zent E, Wittinghofer A. GTP-induced conformational changes in septins and implications for function. Proc Natl Acad Sci USA. 2009;106:16592–7.  https://doi.org/10.1073/pnas.0902858106. [pii] 0902858106.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sirianni A, Krokowski S, Lobato-Marquez D, Buranyi S, Pfanzelter J, Galea D, et al. Mitochondria mediate septin cage assembly to promote autophagy of Shigella. EMBO Rep. 2016;17:1029–43.  https://doi.org/10.15252/embr.201541832.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Song K, Russo G, Krauss M. Septins as modulators of endo-lysosomal membrane traffic. Front Cell Dev Biol. 2016;4:124.  https://doi.org/10.3389/fcell.2016.00124.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Spiliotis ET, Kinoshita M, Nelson WJ. A mitotic septin scaffold required for Mammalian chromosome congression and segregation. Science. 2005;307:1781–5.  https://doi.org/10.1126/science.1106823.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Surka MC, Tsang CW, Trimble WS. The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell. 2002;13:3532–45.  https://doi.org/10.1091/mbc.E02-01-0042.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Suzuki G, Harper KM, Hiramoto T, Sawamura T, Lee M, Kang G, et al. Sept5 deficiency exerts pleiotropic influence on affective behaviors and cognitive functions in mice. Hum Mol Genet. 2009;18:1652–60.  https://doi.org/10.1093/hmg/ddp086.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tada T, Simonetta A, Batterton M, Kinoshita M, Edbauer D, Sheng M. Role of Septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr Biol. 2007;17:1752–8.  https://doi.org/10.1016/j.cub.2007.09.039.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Taniguchi M, Taoka M, Itakura M, Asada A, Saito T, Kinoshita M, et al. Phosphorylation of adult type Sept5 (CDCrel-1) by cyclin-dependent kinase 5 inhibits interaction with syntaxin-1. J Biol Chem. 2007;282:7869–76.  https://doi.org/10.1074/jbc.M609457200.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tooley AJ, Gilden J, Jacobelli J, Beemiller P, Trimble WS, Kinoshita M, et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat Cell Biol. 2009;11:17–26.  https://doi.org/10.1038/ncb1808. [pii] ncb1808.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Torraca V, Mostowy S. Septins and bacterial infection. Front Cell Dev Biol. 2016;4:127.  https://doi.org/10.3389/fcell.2016.00127.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Vagin O, Tokhtaeva E, Garay PE, Souda P, Bassilian S, Whitelegge JP, et al. Recruitment of septin cytoskeletal proteins by botulinum toxin A protease determines its remarkable stability. J Cell Sci. 2014;127:3294–308.  https://doi.org/10.1242/jcs.146324.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Versele M, Thorner J. Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol. 2005;15:414–24.  https://doi.org/10.1016/j.tcb.2005.06.007.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Versele M, Gullbrand B, Shulewitz MJ, Cid VJ, Bahmanyar S, Chen RE, et al. Protein-protein interactions governing septin heteropentamer assembly and septin filament organization in Saccharomyces cerevisiae. Mol Biol Cell. 2004;15:4568–83.  https://doi.org/10.1091/mbc.E04-04-0330.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Warren JD, Xiong W, Bunker AM, Vaughn CP, Furtado LV, Roberts WL, et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011;9:133.  https://doi.org/10.1186/1741-7015-9-133.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Weems AD, Johnson CR, Argueso JL, McMurray MA. Higher-order septin assembly is driven by GTP-promoted conformational changes: evidence from unbiased mutational analysis in Saccharomyces cerevisiae. Genetics. 2014;196:711–27.  https://doi.org/10.1534/genetics.114.161182.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Weirich CS, Erzberger JP, Barral Y. The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol. 2008;9:478–89.  https://doi.org/10.1038/nrm2407.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Xue J, Wang X, Malladi CS, Kinoshita M, Milburn PJ, Lengyel I, et al. Phosphorylation of a new brain-specific septin, G-septin, by cGMP-dependent protein kinase. J Biol Chem. 2000;275:10047–56.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Xue J, Milburn PJ, Hanna BT, Graham ME, Rostas JA, Robinson PJ. Phosphorylation of septin 3 on Ser-91 by cGMP-dependent protein kinase-I in nerve terminals. Biochem J. 2004;381:753–60.  https://doi.org/10.1042/BJ20040455.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yoruker EE, Holdenrieder S, Gezer U. Blood-based biomarkers for diagnosis, prognosis and treatment of colorectal cancer. Clin Chim Acta. 2016;455:26–32.  https://doi.org/10.1016/j.cca.2016.01.016.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yu W, Ding X, Chen F, Liu M, Shen S, Gu X, et al. The phosphorylation of SEPT2 on Ser218 by casein kinase 2 is important to hepatoma carcinoma cell proliferation. Mol Cell Biochem. 2009;325:61–7.  https://doi.org/10.1007/s11010-008-0020-2.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zhu JL, Lin SL, Li M, Ouyang YC, Hou Y, Schatten H, et al. Septin2 is modified by SUMOylation and required for chromosome congression in mouse oocytes. Cell Cycle. 2010;9:1607–16.  https://doi.org/10.4161/cc.9.8.11463.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Cell BiochemistryHannover Medical School (MHH)HannoverGermany