Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Gianluca GalloEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101971

Historical Background

Actin is a ubiquitously expressed protein in both eukaryotes and prokaryotes. Monomers of actin polymerize into actin filaments and represent one of the three major components of the cellular cytoskeleton, also including microtubules and intermediate filaments. The discovery of the protein actin preceded the discovery of actin filaments and is dated back to the end of the 1800s, in terms of its earliest detection. The initial detection of actin was performed using vertebrate muscle tissue wherein it is in great abundance. The complete sequence of actin was initially described at a Cold Spring Harbor Symposium in 1971 and subsequently published in 1973. The solution of the structure of actin greatly benefited from the unexpected observations that actin formed high-affinity complexes with deoxyribonuclease I (DNase I) and profilin, the latter being a protein with now well-understood roles in the regulation of actin biology, while the significance of the former...

This is a preview of subscription content, log in to check access.


  1. Amos LA, Amos BA. The organization of cytoplasm. In: Molecules of the cytoskeleton. New York: The Guilford Press; 1991. p. 13–4.CrossRefGoogle Scholar
  2. Bernstein BW, Bamburg JR. Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci. 2003;23:1–6.PubMedCrossRefGoogle Scholar
  3. Case LB, Waterman CM. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol. 2015;17:955–63. doi:10.1038/ncb3191.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cheever TR, Ervasti JM. Actin isoforms in neuronal development and function. Int Rev Cell Mol Biol. 2013;301:157–213. doi:10.1016/B978-0-12-407704-1.00004-X.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Herman IM. Actin isoforms. Curr Opin Cell Biol. 1993;5:48–55.PubMedCrossRefGoogle Scholar
  6. Jung H, Gkogkas CG, Sonenberg N, Holt CE. Remote control of gene function by local translation. Cell. 2014;157:26–40. doi:10.1016/j.cell.2014.03.005.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Köster DV, Mayor S. Cortical actin and the plasma membrane: inextricably intertwined. Curr Opin Cell Biol. 2016;38:81–9. doi:10.1016/j.ceb.2016.02.021.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Kristó I, Bajusz I, Bajusz C, Borkúti P, Vilmos P. Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem Cell Biol. 2016;145:373–88. doi:10.1007/s00418-015-1400-9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Mannherz HG, Mazur AJ, Jockusch B. Repolymerization of actin from actin:thymosin beta4 complex induced by diaphanous related formins and gelsolin. Ann N Y Acad Sci. 2010;1194:36–43. doi:10.1111/j.1749-6632.2010.05467.x.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Pollard TD. Actin and actin-binding proteins. Cold Spring Harb Perspect Biol. 2016;8(8). pii: a018226. doi:10.1101/cshperspect.a018226. PMID:26988969.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Richter JD. Think globally, translate locally: what mitotic spindles and neuronal synapses have in common. Proc Natl Acad Sci U S A. 2001;98:7069–71.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Rubenstein PA, Wen KK. Insights into the effects of disease-causing mutations in human actins. Cytoskeleton (Hoboken). 2014;71:211–29. doi:10.1002/cm.21169.CrossRefGoogle Scholar
  13. Sasaki S, Yui N, Noda Y. Actin directly interacts with different membrane channel proteins and influences channel activities: AQP2 as a model. Biochim Biophys Acta. 2014;1838:514–20. doi:10.1016/j.bbamem.2013.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Schoenenberger CA, Mannherz HG, Jockusch BM. Actin: from structural plasticity to functional diversity. Eur J Cell Biol. 2011;90:797–804. doi:10.1016/j.ejcb.2011.05.002.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J Cell Biol. 1997;139:397–415.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Terman JR, Kashina A. Post-translational modification and regulation of actin. Curr Opin Cell Biol. 2013;25:30–8. doi:10.1016/j.ceb.2012.10.009.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Anatomy and Cell Biology, Shriners Pediatric Research CenterLewis Katz School of Medicine, Temple UniversityPhiladelphiaUSA