Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Sox2 (SRY-Box 2)

  • Koji Shimozaki
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101970

Synonyms

Historical Background

The sex-determining region Y (SRY/Sry) gene, which is a mammalian male-specifying factor on the Y chromosome, was first defined in 1990. Since its discovery, more than 20 different Sry-related genes that have high-mobility group (HMG) box sequences similar to Sry have been cloned, and they form the conserved Sry-related HMG box (SOX) gene family. These genes are classified into subgroups based on the HMG box domain structure and other protein characteristics. The members of the SoxB1 group gene family, called Sox1, Sox2, and Sox3, were found to exhibit highly tissue-specific expression during mouse embryogenesis (Bowles et al. 2000). They show similar expression patterns in embryos, and are functionally redundant, with more than 80% amino acid sequence similarity. Sox2 is indispensable during the development of a wide range of species. It targets several...

This is a preview of subscription content, log in to check access.

References

  1. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126–40.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Basu-Roy U, Ambrosetti D, Favaro R, Nicolis SK, Mansukhani A, Basilico C. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ. 2010;17:1345–53.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 2000;227:239–55.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Campolo F, Gori M, Favaro R, Nicolis S, Pellegrini M, Botti F, et al. Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem Cells. 2013;31:1408–21.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Catena R, Tiveron C, Ronchi A, Porta S, Ferri A, Tatangelo L, et al. Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells. J Biol Chem. 2004;279:41846–57.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chakravarthy H, Boer B, Desler M, Mallanna SK, McKeithan TW, Rizzino A. Identification of DPPA4 and other genes as putative Sox2:Oct-3/4 target genes using a combination of in silico analysis and transcription-based assays. J Cell Physiol. 2008;216:651–62.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 2002;36:1021–34.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, Giachino C, et al. Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci. 2009;12:1248–56.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ferri AL, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development. 2004;131:3805–19.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Gontan C, de Munck A, Vermeij M, Grosveld F, Tibboel D, Rottier R. Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Dev Biol. 2008;317:296–309.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron. 2003;39:749–65.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S, et al. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci. 2008;11:277–84.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hao J, Li TG, Qi X, Zhao DF, Zhao GQ. WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev Biol. 2006;290:81–91.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hu Q, Zhang L, Wen J, Wang S, Li M, Feng R, et al. The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells. 2010;28:279–86.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Inoue M, Kamachi Y, Matsunami H, Imada K, Uchikawa M, Kondoh H. PAX6 and SOX2-dependent regulation of the Sox2 enhancer N-3 involved in embryonic visual system development. Genes Cells. 2007;12:1049–61.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Josephson R, Muller T, Pickel J, Okabe S, Reynolds K, Turner PA, et al. POU transcription factors control expression of CNS stem cell-specific genes. Development. 1998;125:3087–100.PubMedPubMedCentralGoogle Scholar
  18. Kamachi Y, Uchikawa M, Tanouchi A, Sekido R, Kondoh H. Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev. 2001;15:1272–86.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kelberman D, Rizzoti K, Avilion A, Bitner-Glindzicz M, Cianfarani S, Collins J, et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Invest. 2006;116:2442–55.PubMedPubMedCentralGoogle Scholar
  20. Keramari M, Razavi J, Ingman KA, Patsch C, Edenhofer F, Ward CM, et al. Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One. 2010;5:e13952.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kondoh H, Kamachi Y. SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms. Int J Biochem Cell Biol. 2009;42:391–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kondoh H, Kamachi Y. SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms. Int J Biochem Cell Biol. 2010;42:391–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci. 2009;12:1097–105.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Maekawa M, Takashima N, Arai Y, Nomura T, Inokuchi K, Yuasa S, et al. Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells. 2005;10:1001–14.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9:625–35.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Miyagi S, Saito T, Mizutani K, Masuyama N, Gotoh Y, Iwama A, et al. The Sox-2 regulatory regions display their activities in two distinct types of multipotent stem cells. Mol Cell Biol. 2004;24:4207–20.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Niwa H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct. 2001;26:137–48.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460:118–22.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development. 2005;132:335–44.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Peltier J, Conway A, Keung AJ, Schaffer DV. Akt increases sox2 expression in adult hippocampal neural progenitor cells, but increased sox2 does not promote proliferation. Stem Cells Dev. 2011;20:1153–61.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Pevny LH, Nicolis SK. Sox2 roles in neural stem cells. Int J Biochem Cell Biol. 2010;42:421–4.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R, Morrisey EE, et al. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development. 2007;134:2521–31.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Que J, Luo X, Schwartz RJ, Hogan BL. Multiple roles for Sox2 in the developing and adult mouse trachea. Development. 2009;136:1899–907.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012;11:100–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12:15–30.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Shimozaki K, Zhang CL, Suh H, Denli AM, Evans RM, Gage FH. SRY-box-containing gene 2 regulation of nuclear receptor tailless (Tlx) transcription in adult neural stem cells. J Biol Chem. 2012;287:5969–78.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Shimozaki K, Clemenson Jr GD, Gage FH. Paired related homeobox protein 1 is a regulator of stemness in adult neural stem/progenitor cells. J Neurosci. 2013;33:4066–75.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefGoogle Scholar
  39. Takanaga H, Tsuchida-Straeten N, Nishide K, Watanabe A, Aburatani H, Kondo T. Gli2 is a novel regulator of sox2 expression in telencephalic neuroepithelial cells. Stem Cells. 2009;27:165–74.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Tanaka S, Kamachi Y, Tanouchi A, Hamada H, Jing N, Kondoh H. Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol Cell Biol. 2004;24:8834–46.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, et al. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 2006;20:1187–202.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Thomson M, Liu SJ, Zou LN, Smith Z, Meissner A, Ramanathan S. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell. 2011;145:875–89.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Uchikawa M, Ishida Y, Takemoto T, Kamachi Y, Kondoh H. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell. 2003;4:509–19.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Williamson KA, Hever AM, Rainger J, Rogers RC, Magee A, Fiedler Z, et al. Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum Mol Genet. 2006;15:1413–22.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Functional Genomics, Life Science Support CenterNagasaki UniversityNagasakiJapan