Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Interleukin 2

  • David KlatzmannEmail author
  • Thomas R. Malek
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101968


Historical Background

Interleukin-2 (IL-2) was originally described as a T cell growth factor produced by lymphocytes (Morgan et al. 1976). IL-2 was the first interleukin to be cloned in 1983 and rapidly produced by genetic engineering. Much work has been done on elucidating its structure, identifying its receptors, and studying its biology reviewed in Smith (1988). In the 1980s, IL-2 was established as an essential mediator of T cell-dependent effector immune responses. Remarkably, a radical shift in our understanding of IL-2 biology and use has recently occurred. From a cytokine that activates effector T cells and is used at high dose as a cancer immunotherapy, IL-2 is now recognized as a cytokine that activates Tregs to control autoimmunity and inflammation when used at low dose reviewed in Klatzmann and Abbas (2015). Here we describe mechanistic aspects of IL-2/IL-2R biology and the role of IL-2 in health,...

This is a preview of subscription content, log in to check access.


  1. Ballesteros-Tato A, Leon B, Graf BA, Moquin A, Adams PS, Lund FE, et al. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity. 2012;36:847–56.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bright R, Coventry BJ, Eardley-Harris N, Briggs N. Clinical response rates from interleukin-2 therapy for metastatic melanoma over 30 years’ experience: a meta-analysis of 3312 patients. J Immunother. 2017;40:21–30.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity. 2008;28:112–21.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Cheng G, Yuan X, Tsai MS, Podack ER, Yu A, Malek TR. IL-2 receptor signaling is essential for the development of Klrg1+ terminally differentiated T regulatory cells. J Immunol. 2012;189:1780–91.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Cheng G, Yu A, Dee MJ, Malek TR. IL-2R signaling is essential for functional maturation of regulatory T cells during thymic development. J Immunol. 2013;190:1567–75.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Churlaud G, Jimenez V, Ruberte J, Amadoudji Zin M, Fourcade G, Gottrand G, Casana E, Lambrecht B, Bellier B, Piaggio E, et al. Sustained stimulation and expansion of Tregs by IL-2 control autoimmunity without impairing immune responses to infection, vaccination and cancer. Clin Immunol. 2014;151:114–26.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cote-Sierra J, Foucras G, Guo L, Chiodetti L, Young HA, Hu-Li J, et al. Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci USA. 2004;101:3880–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. Cutting edge: IL-2 is essential for TGF-β-mediated induction of Foxp3+ T regulatory cells. J Immunol. 2007;178:4022–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dooms H, Wolslegel K, Lin P, Abbas AK. Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7R alpha-expressing cells. J Exp Med. 2007;204:547–57.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005;22:329–41.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Hartemann A, Bensimon G, Payan CA, Jacqueminet S, Bourron O, Nicolas N, Fonfrede M, Rosenzwajg M, Bernard C, Klatzmann D. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2013;1:295–305.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity. 2007;27:281–95.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA, Ahmed R. Prolonged interleukin-2Rα expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity. 2010;32:91–103.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Kitas GD, Salmon M, Farr M, Gaston JS, Bacon PA. Deficient interleukin 2 production in rheumatoid arthritis: association with active disease and systemic complications. Clin Exp Immunol. 1988;73:242–9.PubMedPubMedCentralGoogle Scholar
  15. Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol. 2015;15:283–94.CrossRefPubMedGoogle Scholar
  16. Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B, Alyea III EP, Armand P, Cutler C, Ho VT, Treister NS, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365:2055–66.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26:371–81.CrossRefPubMedGoogle Scholar
  18. Li YR, Li J, Zhao SD, Bradfield JP, Mentch FD, Maggadottir SM, Hou C, Abrams DJ, Chang D, Gao F, et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat Med. 2015;21:1018–27.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Liao W, Lin JX, Wang L, Li P, Leonard WJ. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol. 2011;12:551–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Lieberman LA, Tsokos GC. The IL-2 defect in systemic lupus erythematosus disease has an expansive effect on host immunity. J Biomed Biotechnol. 2010;740619.Google Scholar
  21. Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development. Immunity. 2008;28:100–11.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell. 2010;140:845–58.CrossRefPubMedGoogle Scholar
  23. Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–79.CrossRefPubMedGoogle Scholar
  24. Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010;33:153–65.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Malek TR, Yu A, Vincek V, Scibelli P, Kong L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity. 2002;17:167–78.CrossRefPubMedGoogle Scholar
  26. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186:3299–303.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193:1007–8.CrossRefPubMedGoogle Scholar
  28. Nelson BH, Willerford DM. Biology of the interleukin-2 receptor. Adv Immunol. 1998;70:1–81.CrossRefPubMedGoogle Scholar
  29. Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ, Rao A. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity. 2010;32:79–90.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Raynor J, Sholl A, Plas DR, Bouillet P, Chougnet CA, Hildeman DA. IL-15 fosters age-driven regulatory T cell accrual in the face of declining IL-2 levels. T Cell Biol. 2013;4:161.Google Scholar
  31. Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192:5451–8.CrossRefPubMedGoogle Scholar
  32. Rosenzwajg M, Churlaud G, Mallone R, Six A, Dérian N, Chaara W, Lorenzon R, Long SA, Buckner JH, Afonso G, et al. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun. 2015;58:48–58.CrossRefPubMedGoogle Scholar
  33. Saadoun D, Rosenzwajg M, Joly F, Six A, Carrat F, Thibault V, Sene D, Cacoub P, Klatzmann D. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med. 2011;365:2067–77.CrossRefPubMedGoogle Scholar
  34. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993;75:253–61.CrossRefPubMedGoogle Scholar
  35. Schorle H, Holtschke T, Hunig T, Shimpl A, Horak I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature. 1991;352:621–4.CrossRefPubMedGoogle Scholar
  36. Smigiel KS, Richards E, Srivastava S, Thomas KR, Dudda JC, Klonowski KD, et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J Exp Med. 2014;211:121–36.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Smith KA. Interleukin-2: inception, impact, and implications. Science. 1988;240:1169–76.CrossRefPubMedGoogle Scholar
  38. Suzuki H, Kundig TM, Furlonger C, Wakeham A, Timms E, Matsuyama T, Schmits R, Simard JJ, Ohashi PS, Griesser H, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science. 1995;268:1472–6.CrossRefPubMedGoogle Scholar
  39. Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995;3:521–30.CrossRefPubMedGoogle Scholar
  40. Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature. 2006;441:890–3.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Yu A, Zhu L, Altman NH, Malek TR. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity. 2009;30:204–17.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 2010;463:808–12.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Zier KS, Leo MM, Spielman RS, Baker L. Decreased synthesis of interleukin-2 (IL-2) in insulin-dependent diabetes mellitus. Diabetes. 1984;33:552–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.UPMC, Université Paris 06, INSERM, Immunology-Immunopathology-ImmunotherapySorbonne UniversitésParisFrance
  2. 2.Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B)AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
  3. 3.Department of Microbiology and Immunology and the Diabetes Research Institute, Miller School of MedicineUniversity of MiamiMiamiUSA