Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

ADP-Ribosylation Factor-6 (ARF6)

  • Salman Tamaddon-Jahromi
  • Venkateswarlu Kanamarlapudi
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101965

Synonyms

Historical Background

The first member of the ADP-ribosylation factor (ARF) family (ARF1) was originally discovered in 1984 as a cofactor for cholera toxin-mediated ADP-ribosylation of the heterotrimeric G-protein Gs (Kahn and Gilman 1984). Since then it has been found to be a Ras-related small GTPase with molecular weight of ~21 kDa (Sewell and Kahn 1988). Use of Saccharomyces cerevisiae as a model system allowed the determination of a role for ARF1 in the secretory pathway, along with its intracellular localization at the Golgi (Stearns et al. 1990). ARFs are ubiquitously expressed in eukaryotic cells and are major regulators of intercellular vesicle trafficking. They have been found to be conserved across many species, including yeast, fish, insects, and animals, indicating an important role for them in cellular functions. Subsequent characterization of the ARF family in mammals has...

This is a preview of subscription content, log in to check access.

References

  1. Akiyama M, Zhou M, Sugimoto R, Hongu T, Furuya M, Funakoshi Y, et al. Tissue- and development-dependent expression of the small GTPase Arf6 in mice. Dev Dyn. 2010;239:3416–35.  https://doi.org/10.1002/dvdy.22481.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Begle A, Tryoen-Toth P, de Barry J, Bader MF, Vitale N. ARF6 regulates the synthesis of fusogenic lipids for calcium-regulated exocytosis in neuroendocrine cells. J Biol Chem. 2009;284:4836–45.  https://doi.org/10.1074/jbc.M806894200.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Caumont AS, Galas MC, Vitale N, Aunis D, Bader MF. Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D. J Biol Chem. 1998;273:1373–9.PubMedCrossRefGoogle Scholar
  4. Cavenagh MM, Whitney JA, Carroll K, Zhang C, Boman AL, Rosenwald AG, et al. Intracellular distribution of Arf proteins in mammalian cells. Arf6 is uniquely localized to the plasma membrane. J Biol Chem. 1996;271:21767–74.PubMedCrossRefGoogle Scholar
  5. Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, et al. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell. 2014;156:195–207.  https://doi.org/10.1016/j.cell.2013.11.048.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Choi W, Karim ZA, Whiteheart SW. Arf6 plays an early role in platelet activation by collagen and convulxin. Blood. 2006;107:3145–52. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16352809.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, et al. beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem. 2001;276:42509–13.  https://doi.org/10.1074/jbc.M108399200.CrossRefPubMedPubMedCentralGoogle Scholar
  8. D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol. 2006;7:347–58.  https://doi.org/10.1038/nrm1910.CrossRefPubMedPubMedCentralGoogle Scholar
  9. D’Souza-Schorey C, Stahl PD. Myristoylation is required for the intracellular localization and endocytic function of ARF6. Exp Cell Res. 1995;221:153–9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7589240.PubMedCrossRefGoogle Scholar
  10. D’Souza-Schorey C, Boshans RL, McDonough M, Stahl PD, Van Aelst L. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 1997;16:5445–54.  https://doi.org/10.1093/emboj/16.17.5445.CrossRefPubMedPubMedCentralGoogle Scholar
  11. D’Souza-Schorey C, van Donselaar E, Hsu VW, Yang C, Stahl PD, Peters PJ. ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J Cell Biol. 1998;140:603–16.  https://doi.org/10.1083/jcb.140.3.603.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Davies JC, Bain SC, Kanamarlapudi V. ADP-ribosylation factor 6 regulates endothelin-1-induced lipolysis in adipocytes. Biochem Pharmacol. 2014a;90:406–13.  https://doi.org/10.1016/j.bcp.2014.06.012.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Davies JC, Tamaddon-Jahromi S, Jannoo R, Kanamarlapudi V. Cytohesin 2/ARF6 regulates preadipocyte migration through the activation of ERK1/2. Biochem Pharmacol. 2014b;92:651–60.  https://doi.org/10.1016/j.bcp.2014.09.023.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443:651–7.  https://doi.org/10.1038/nature05185.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Eva R, Crisp S, Marland JR, Norman JC, Kanamarlapudi V, ffrench-Constant C, et al. ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons. J Neurosci. 2012;32:10352–64.  https://doi.org/10.1523/jneurosci.1409-12.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fielding AB, Schonteich E, Matheson J, Wilson G, Yu X, Hickson GRX, et al. Rab11-FIP3 and FIP4 interact with Arf6 and the Exocyst to control membrane traffic in cytokinesis. EMBO J. 2005;24:3389–99.  https://doi.org/10.1038/sj.emboj.7600803.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Galas MC, Helms JB, Vitale N, Thierse D, Aunis D, Bader MF. Regulated exocytosis in chromaffin cells. A potential role for a secretory granule-associated ARF6 protein. J Biol Chem. 1997;272:2788–93.PubMedCrossRefGoogle Scholar
  18. Gaschet J, Hsu VW. Distribution of ARF6 between membrane and cytosol is regulated by its GTPase cycle. J Biol Chem. 1999;274:20040–5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10391955.PubMedCrossRefGoogle Scholar
  19. George AA, Hayden S, Stanton GR, Brockerhoff SE. Arf6 and the 5’phosphatase of Synaptojanin 1 regulate autophagy in cone photoreceptors. Inside Cell. 2016;1:117–33.  https://doi.org/10.1002/icl3.1044.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.  https://doi.org/10.1016/j.cell.2011.02.013.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hashimoto A, Oikawa T, Hashimoto S, Sugino H, Yoshikawa A, Otsuka Y, et al. P53- and mevalonate pathway-driven malignancies require Arf6 for metastasis and drug resistance. J Cell Biol. 2016a;213:81–95.  https://doi.org/10.1083/jcb.201510002.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hashimoto S, Mikami S, Sugino H, Yoshikawa A, Hashimoto A, Onodera Y, et al. Lysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer. Nat Commun. 2016b;7:10656.  https://doi.org/10.1038/ncomms10656.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Haun RS, Tsai SC, Adamik R, Moss J, Vaughan M. Effect of myristoylation on GTP-dependent binding of ADP-ribosylation factor to Golgi. J Biol Chem. 1993;268:7064–8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8463239.
  24. Hongu T, Yamauchi Y, Funakoshi Y, Katagiri N, Ohbayashi N, Kanaho Y. Pathological functions of the small GTPase Arf6 in cancer progression: tumor angiogenesis and metastasis. Small GTPases. 2016;7:47–53.  https://doi.org/10.1080/21541248.2016.1154640.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hosaka M, Toda K, Takatsu H, Torii S, Murakami K, Nakayama K. Structure and intracellular localization of mouse ADP-ribosylation factors type 1 to type 6 (ARF1-ARF6). J Biochem (Tokyo). 1996;120:813–9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8947846.PubMedCrossRefGoogle Scholar
  26. Houndolo T, Boulay PL, Claing A. G protein-coupled receptor endocytosis in ADP-ribosylation factor 6-depleted cells. J Biol Chem. 2005;280:5598–604.  https://doi.org/10.1074/jbc.M411456200.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Huang Y, Joshi S, Xiang B, Kanaho Y, Li Z, Bouchard BA, et al. Arf6 controls platelet spreading and clot retraction via integrin alphaIIbbeta3 trafficking. Blood. 2016;127:1459–67.  https://doi.org/10.1182/blood-2015-05-648550.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Humphreys D, Davidson AC, Hume PJ, Makin LE, Koronakis V. Arf6 coordinates actin assembly through the WAVE complex, a mechanism usurped by Salmonella to invade host cells. Proc Natl Acad Sci USA. 2013;110:16880–5.  https://doi.org/10.1073/pnas.1311680110.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Humphreys D, Singh V, Koronakis V. Inhibition of WAVE regulatory complex activation by a bacterial virulence effector counteracts pathogen phagocytosis. Cell Rep. 2016;17:697–707.  https://doi.org/10.1016/j.celrep.2016.09.039.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jang DJ, Jun YW, Shim J, Sim SE, Lee JA, Lim CS, et al. Activation of Aplysia ARF6 induces neurite outgrowth and is sequestered by the overexpression of the PH domain of Aplysia Sec7 proteins. Neurobiol Learn Mem. 2016;S1074-7427(16):30092–2.  https://doi.org/10.1016/j.nlm.2016.06.017.
  31. Kahn RA, Gilman AG. Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem. 1984;259:6228–34.PubMedPubMedCentralGoogle Scholar
  32. Kahn RA, Goddard C, Newkirk M. Chemical and immunological characterization of the 21-kDa ADP-ribosylation factor of adenylate cyclase. J Biol Chem. 1988;263:8282–7.PubMedPubMedCentralGoogle Scholar
  33. Kanamarlapudi V, Owens SE, Saha K, Pope RJ, Mundell SJ. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets. PLoS One. 2012a;7:e43532.  https://doi.org/10.1371/journal.pone.0043532.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kanamarlapudi V, Thompson A, Kelly E, Lopez Bernal A. ARF6 activated by the LHCG receptor through the cytohesin family of guanine nucleotide exchange factors mediates the receptor internalization and signaling. J Biol Chem. 2012b;287:20443–55.  https://doi.org/10.1074/jbc.M112.362087.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kim HS. Assignment of the human ADP-ribosylation factor 6 (ARF6) gene to chromosome 7q22.1 by radiation hybrid mapping. Cytogenet Cell Genet. 1999;84:94.  https://doi.org/10.1159/000015225.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Koo TH, Eipper BA, Donaldson JG. Arf6 recruits the Rac GEF Kalirin to the plasma membrane facilitating Rac activation. BMC Cell Biol. 2007;8:29.  https://doi.org/10.1186/1471-2121-8-29.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J Cell Biol. 2003;162:113–24.  https://doi.org/10.1083/jcb.200301006.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Krcmery J, Camarata T, Kulisz A, Simon HG. Nucleocytoplasmic functions of the PDZ-LIM protein family: new insights into organ development. BioEssays. 2010;32:100–8.  https://doi.org/10.1002/bies.200900148.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lee FJ, Moss J, Vaughan M. Human and Giardia ADP-ribosylation factors (ARFs) complement ARF function in Saccharomyces cerevisiae. J Biol Chem. 1992;267:24441–5.PubMedPubMedCentralGoogle Scholar
  40. Macia E, Luton F, Partisani M, Cherfils J, Chardin P, Franco M. The GDP-bound form of Arf6 is located at the plasma membrane. J Cell Sci. 2004;117:2389–98.  https://doi.org/10.1242/jcs.01090.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marquer C, Tian H, Yi J, Bastien J, Dall’Armi C, Yang-Klingler Y, et al. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun. 2016;7:11919.  https://doi.org/10.1038/ncomms11919.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Menetrey J, Macia E, Pasqualato S, Franco M, Cherfils J. Structure of Arf6-GDP suggests a basis for guanine nucleotide exchange factors specificity. Nat Struct Mol Biol. 2000;7:466–9.CrossRefGoogle Scholar
  43. Montagnac G, Sibarita JB, Loubery S, Daviet L, Romao M, Raposo G, et al. ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr Biol. 2009;19:184–95.  https://doi.org/10.1016/j.cub.2008.12.043.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mossessova E, Gulbis JM, Goldberg J. Structure of the guanine nucleotide exchange factor Sec7 domain of human arno and analysis of the interaction with ARF GTPase. Cell. 1998;92:415–23.PubMedCrossRefGoogle Scholar
  45. Mukhamedova N, Hoang A, Cui HL, Carmichael I, Fu Y, Bukrinsky M, et al. Small GTPase ARF6 regulates endocytic pathway leading to degradation of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2016;36:2292–303.  https://doi.org/10.1161/atvbaha.116.308418.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Murtagh Jr JJ, Mowatt MR, Lee CM, Lee FJ, Mishima K, Nash TE, et al. Guanine nucleotide-binding proteins in the intestinal parasite Giardia lamblia. Isolation of a gene encoding an approximately 20-kDa ADP-ribosylation factor. J Biol Chem. 1992;267:9654–62.PubMedPubMedCentralGoogle Scholar
  47. Naslavsky N, Weigert R, Donaldson JG. Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol Biol Cell. 2004;15:3542–52.  https://doi.org/10.1091/mbc.E04-02-0151.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Palacios F, Schweitzer JK, Boshans RL, D’Souza-Schorey C. ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol. 2002;4:929–36.  https://doi.org/10.1038/ncb881.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Paleotti O, Macia E, Luton F, Klein S, Partisani M, Chardin P, et al. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J Biol Chem. 2005;280:21661–6.  https://doi.org/10.1074/jbc.M503099200.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pasqualato S, Menetrey J, Franco M, Cherfils J. The structural GDP/GTP cycle of human Arf6. EMBO Rep. 2001;2:234–8.  https://doi.org/10.1093/embo-reports/kve043.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pelletan LE, Suhaiman L, Vaquer CC, Bustos MA, De Blas GA, Vitale N, et al. ADP ribosylation factor 6 (ARF6) promotes acrosomal exocytosis by modulating lipid turnover and Rab3A activation. J Biol Chem. 2015;290:9823–41.  https://doi.org/10.1074/jbc.M114.629006.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Peters PJ, Hsu VW, Ooi CE, Finazzi D, Teal SB, Oorschot V, et al. Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J Cell Biol. 1995;128:1003–17. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7896867.PubMedCrossRefGoogle Scholar
  53. Powelka AM, Sun J, Li J, Gao M, Shaw LM, Sonnenberg A, et al. Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11. Traffic (Copenhagen, Denmark). 2004;5:20–36.CrossRefGoogle Scholar
  54. Radhakrishna H, Al-Awar O, Khachikian Z, Donaldson JG. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J Cell Sci. 1999;112(Pt 6):855–66.PubMedPubMedCentralGoogle Scholar
  55. Randazzo PA, Yang YC, Rulka C, Kahn RA. Activation of ADP-ribosylation factor by Golgi membranes. Evidence for a brefeldin A- and protease-sensitive activating factor on Golgi membranes. J Biol Chem. 1993;268:9555–63. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8486645.
  56. Roth MG. Molecular mechanisms of PLD function in membrane traffic. Traffic (Copenhagen, Denmark). 2008;9:1233–9.  https://doi.org/10.1111/j.1600–0854.2008.00742.x.CrossRefGoogle Scholar
  57. Sakagami H, Hara Y, Fukaya M. Interaction of serologically defined colon cancer antigen-3 with Arf6 and its predominant expression in the mouse testis. Biochem Biophys Res Commun. 2016;477:868–73.  https://doi.org/10.1016/j.bbrc.2016.06.150.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Santy LC, Casanova JE. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J Cell Biol. 2001;154:599–610.  https://doi.org/10.1083/jcb.200104019.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Santy LC, Ravichandran KS, Casanova JE. The DOCK180/Elmo complex couples ARNO-mediated Arf6 activation to the downstream activation of Rac1. Curr Biol. 2005;15:1749–54.  https://doi.org/10.1016/j.cub.2005.08.052.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Scholz R, Berberich S, Rathgeber L, Kolleker A, Kohr G, Kornau HC. AMPA receptor signaling through BRAG2 and Arf6 critical for long-term synaptic depression. Neuron. 2010;66:768–80.  https://doi.org/10.1016/j.neuron.2010.05.003.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schweitzer JK, D’Souza-Schorey C. Localization and activation of the ARF6 GTPase during cleavage furrow ingression and cytokinesis. J Biol Chem. 2002;277:27210–6.  https://doi.org/10.1074/jbc.M201569200.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sewell JL, Kahn RA. Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc Natl Acad Sci USA. 1988;85:4620–4.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Stearns T, Willingham MC, Botstein D, Kahn RA. ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci USA. 1990;87:1238–42. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2105501.CrossRefGoogle Scholar
  64. Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. eLife. 2016;5:e10116.  https://doi.org/10.7554/eLife.10116.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tsuchiya M, Price SR, Tsai SC, Moss J, Vaughan M. Molecular identification of ADP-ribosylation factor mRNAs and their expression in mammalian cells. J Biol Chem. 1991;266:2772–7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1993656.
  66. Ueda T, Hanai A, Takei T, Kubo K, Ohgi M, Sakagami H, et al. EFA6 activates Arf6 and participates in its targeting to the Flemming body during cytokinesis. FEBS Lett. 2013;587:1617–23.  https://doi.org/10.1016/j.febslet.2013.03.042.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Urban AE, Quick EO, Miller KP, Krcmery J, Simon H-G. Pdlim7 regulates Arf6-dependent actin dynamics and is required for platelet-mediated thrombosis in mice. PLoS One. 2016;11:e0164042.  https://doi.org/10.1371/journal.pone.0164042.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Venkateswarlu K, Cullen PJ. Signalling via ADP-ribosylation factor 6 lies downstream of phosphatidylinositide 3-kinase. Biochem J. 2000;345(Pt 3):719–24.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Yamauchi Y, Miura Y, Kanaho Y. Machineries regulating the activity of the small GTPase Arf6 in cancer cells are potential targets for developing innovative anti-cancer drugs. Adv Biol Regulation. 2016;S2212-4926(16):30060–4.  https://doi.org/10.1016/j.jbior.2016.10.004.CrossRefGoogle Scholar
  70. Yoo JH, Shi DS, Grossmann AH, Sorensen LK, Tong Z, Mleynek TM, et al. ARF6 is an actionable node that orchestrates oncogenic GNAQ signaling in uveal melanoma. Cancer Cell. 2016;29:889–904.  https://doi.org/10.1016/j.ccell.2016.04.015.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Salman Tamaddon-Jahromi
    • 1
  • Venkateswarlu Kanamarlapudi
    • 1
  1. 1.Institute of Life Science 1, School of MedicineSwansea UniversitySwansea, WalesUK