Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

SMAP1

  • Salman Tamaddon-Jahromi
  • Venkateswarlu Kanamarlapudi
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101962

Synonyms

Historical Background

ADP-ribosylation factors (ARFs) are a family of Ras-related small GTPases, which are ubiquitously expressed and known to regulate many cellular processes including intracellular trafficking and membrane-related processes (D’Souza-Schorey and Chavrier 2006; Donaldson and Jackson 2011). Out of the six-member ARFs (ARF1–ARF6) in mammalian cells, ARF1 and ARF6 are well characterized. ARF1 regulates membrane trafficking between the endoplasmic reticulum (ER) and the Golgi, while ARF6 has been shown to modulate clathrin-dependent and independent endocytosis, exocytosis, and organization of actin cytoskeleton at the plasma membrane (Donaldson and Honda 2005). Like other Ras-related small GTPases, the ARF family of GTPases acts as binary switches by cycling between an inactive GDP-bound and an active GTP-bound conformations. The active/inactive cycle of ARFs is tightly...

This is a preview of subscription content, log in to check access.

References

  1. Barragan I, Marcos I, Borrego S, Antinolo G. Mutation screening of three candidate genes, ELOVL5, SMAP1 and GLULD1 in autosomal recessive retinitis pigmentosa. Int J Mol Med. 2005;16:1163–7.PubMedPubMedCentralGoogle Scholar
  2. Chang WT, Chen HI, Chiou RJ, Chen CY, Huang AM. A novel function of transcription factor alpha-Pal/NRF-1: increasing neurite outgrowth. Biochem Biophys Res Commun. 2005;334:199–206. doi:10.1016/j.bbrc.2005.06.079.CrossRefPubMedPubMedCentralGoogle Scholar
  3. D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol. 2006;7:347–58. doi:10.1038/nrm1910.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Donaldson JG, Honda A. Localization and function of Arf family GTPases. Biochem Soc Trans. 2005;33:639–42.  https://doi.org/10.1042/bst0330639.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 2011;12:362–75.  https://doi.org/10.1038/nrm3117.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Efiok BJ, Safer B. Transcriptional regulation of E2F-1 and eIF-2 genes by alpha-pal: a potential mechanism for coordinated regulation of protein synthesis, growth, and the cell cycle. Biochim Biophys Acta. 2000;1495:51–68.PubMedPubMedCentralCrossRefGoogle Scholar
  7. J. El-Bchiri, Guilloux, A., Dartigues, P., Loire, E., Mercier, D., Buhard, O., et al. Nonsense-mediated mRNA decay impacts MSI-driven carcinogenesis and anti-tumor immunity in colorectal cancers. PLoS One 2008;3:e2583.  https://doi.org/10.1371/journal.pone.0002583.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.  https://doi.org/10.1172/JCI39104.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kobayashi N, Kon S, Henmi Y, Funaki T, Satake M, Tanabe K. The Arf GTPase-activating protein SMAP1 promotes transferrin receptor endocytosis and interacts with SMAP2. Biochem Biophys Res Commun. 2014;453:473–9.  https://doi.org/10.1016/j.bbrc.2014.09.108.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kon S, Tanabe K, Watanabe T, Sabe H, Satake M. Clathrin dependent endocytosis of E-cadherin is regulated by the Arf6GAP isoform SMAP1. Exp Cell Res. 2008;314:1415–28.  https://doi.org/10.1016/j.yexcr.2007.11.006.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kon S, Minegishi N, Tanabe K, Watanabe T, Funaki T, Wong WF, et al. Smap1 deficiency perturbs receptor trafficking and predisposes mice to myelodysplasia. J Clin Invest. 2013;123:1123–37.  https://doi.org/10.1172/JCI63711.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Marcos I, Borrego S, Rodriguez de Cordoba S, Galan JJ, Antinolo G. Cloning, characterization and chromosome mapping of the human SMAP1 gene. Gene. 2002;292:167–71.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnittger S, et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci U S A. 2005;102:449–54.  https://doi.org/10.1073/pnas.0406994102.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Sakakura I, Tanabe K, Nouki N, Suzuki M, Satake M, Watanabe T. The carboxy-terminal region of SMAP2 directs subcellular localization as well as Arf protein specificity. Biochem Biophys Res Commun. 2011;404:661–6.  https://doi.org/10.1016/j.bbrc.2010.12.035.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Sangar F, Schreurs AS, Umana-Diaz C, Claperon A, Desbois-Mouthon C, Calmel C, et al. Involvement of small ArfGAP1 (SMAP1), a novel Arf6-specific GTPase-activating protein, in microsatellite instability oncogenesis. Oncogene. 2014;33:2758–67.  https://doi.org/10.1038/onc.2013.211.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Sato Y, Hong HN, Yanai N, Obinata M. Involvement of stromal membrane-associated protein (SMAP-1) in erythropoietic microenvironment. J Biochem. 1998;124:209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Sattler M, Salgia R, Shrikhande G, Verma S, Pisick E, Prasad KV, et al. Steel factor induces tyrosine phosphorylation of CRKL and binding of CRKL to a complex containing c-kit, phosphatidylinositol 3-kinase, and p120(CBL). J Biol Chem. 1997;272:10248–53.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Schoch C, Schnittger S, Klaus M, Kern W, Hiddemann W, Haferlach T. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood. 2003;102:2395–402.  https://doi.org/10.1182/blood-2003-02-0434.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Sumiyoshi M, Masuda N, Tanuma N, Ogoh H, Imai E, Otsuka M, et al. Mice doubly-deficient in the Arf GAPs SMAP1 and SMAP2 exhibit embryonic lethality. FEBS Lett. 2015;589:2754–62.  https://doi.org/10.1016/j.febslet.2015.07.050.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Tanabe K, Torii T, Natsume W, Braesch-Andersen S, Watanabe T, Satake M. A novel GTPase-activating protein for ARF6 directly interacts with clathrin and regulates clathrin-dependent endocytosis. Mol Biol Cell. 2005;16:1617–28.  https://doi.org/10.1091/mbc.E04-08-0683.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Tanabe K, Kon S, Natsume W, Torii T, Watanabe T, Satake M. Involvement of a novel ADP-ribosylation factor GTPase-activating protein, SMAP, in membrane trafficking: implications in cancer cell biology. Cancer Sci. 2006;97:801–6.  https://doi.org/10.1111/j.1349-7006.2006.00251.x.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Tong CW, Wang JL, Jiang MS, Hsu CH, Chang WT, Huang AM. Novel genes that mediate nuclear respiratory factor 1-regualted neurite outgrowth in neuroblastoma IMR-32 cells. Gene. 2013;515:62–70.  https://doi.org/10.1016/j.gene.2012.11.026.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Wachter K, Kowarz E, Marschalek R. Functional characterisation of different MLL fusion proteins by using inducible Sleeping Beauty vectors. Cancer Lett. 2014;352:196–202.  https://doi.org/10.1016/j.canlet.2014.06.016.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Yanai N, Sato Y, Obinata M. A new type-II membrane protein in erythropoietic organs enhances erythropoiesis. Leukemia. 1997;11(Suppl 3):484–5.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Salman Tamaddon-Jahromi
    • 1
  • Venkateswarlu Kanamarlapudi
    • 1
  1. 1.Institute of Life Science 1, School of MedicineSwansea UniversitySwanseaUK