Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • George Papanikolaou
  • Konstantinos Gkouvatsos
  • Kostas PantopoulosEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101940


Historical Background

Transferrin is a secreted glycoprotein that transports ferric iron (Fe3+) from extracellular fluids to tissues. It was first documented as “iron-binding component” of human blood plasma back in 1946. The “iron-binding component” was subsequently purified, biochemically characterized, and named transferrin. A similar protein from egg white (ovotransferrin) was previously reported to inhibit bacterial and yeast growth via its iron-binding capacity. A historical account of the early discovery and characterization of transferrin can be found in an excellent review article (Morgan 1981). Functional studies demonstrated that plasma transferrin delivers iron to developing erythroid cells upon binding to cell surface transferrin receptors. The mechanism involves internalization of iron-loaded transferrin within the recipient cell, release of iron following...

This is a preview of subscription content, log in to check access.


  1. Bailey S, Evans RW, Garratt RC, Gorinsky B, Hasnain S, Horsburgh C, et al. Molecular structure of serum transferrin at 3.3-A resolution. Biochemistry. 1988;27:5804–12.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Barber MF, Elde NC. Nutritional immunity. Escape from bacterial iron piracy through rapid evolution of transferrin. Science. 2014;346:1362–6.  https://doi.org/10.1126/science.1259329.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartnikas TB. Known and potential roles of transferrin in iron biology. Biometals. 2012;25:677–86.  https://doi.org/10.1007/s10534-012-9520-3.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bennett MJ, Lebron JA, Bjorkman PJ. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature. 2000;403:46–53.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Cheng Y, Zak O, Aisen P, Harrison SC, Walz T. Structure of the human transferrin receptor-transferrin complex. Cell. 2004;116:565–76.PubMedPubMedCentralCrossRefGoogle Scholar
  6. de Tayrac M, Roth MP, Jouanolle AM, Coppin H, le Gac G, Piperno A, et al. Genome-wide association study identifies TF as a significant modifier gene of iron metabolism in HFE hemochromatosis. J Hepatol. 2015;62:664–72.  https://doi.org/10.1016/j.jhep.2014.10.017.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Forni GL, Pinto V, Musso M, Mori M, Girelli D, Caldarelli I, et al. Transferrin-immune complex disease: a potentially overlooked gammopathy mediated by IgM and IgG. Am J Hematol. 2013;88:1045–9.  https://doi.org/10.1002/ajh.23558.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93:1721–41.  https://doi.org/10.1152/physrev.00008.2013. [pii] 93/4/1721.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gkouvatsos K, Papanikolaou G, Pantopoulos K. Regulation of iron transport and the role of transferrin. Biochim Biophys Acta. 2012;1820:188–202.  https://doi.org/10.1016/j.bbagen.2011.10.013. [pii] S0304-4165(11)00267-4.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gomme PT, McCann KB, Bertolini J. Transferrin: structure, function and potential therapeutic actions. Drug Discov Today. 2005;10:267–73.  https://doi.org/10.1016/S1359-6446(04)03333-1.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Harris WR. Anion binding properties of the transferrins. Implications for function. Biochim Biophys Acta. 2012;1820:348–61.  https://doi.org/10.1016/j.bbagen.2011.07.017.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hayashi A, Wada Y, Suzuki T, Shimizu A. Studies on familial hypotransferrinemia: unique clinical course and molecular pathology. Am J Hum Genet. 1993;53:201–13.PubMedPubMedCentralGoogle Scholar
  13. Klausner RD, Ashwell G, van Renswoude J, Harford JB, Bridges KR. Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci USA. 1983;80:2263–6.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Lambert LA. Molecular evolution of the transferrin family and associated receptors. Biochim Biophys Acta. 2012;1820:244–55.  https://doi.org/10.1016/j.bbagen.2011.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  15. MacGillivray RT, Mendez E, Shewale JG, Sinha SK, Lineback-Zins J, Brew K. The primary structure of human serum transferrin. The structures of seven cyanogen bromide fragments and the assembly of the complete structure. J Biol Chem. 1983;258:3543–53.PubMedPubMedCentralGoogle Scholar
  16. Morgan EH. Transferrin: biochemistry, physiology and clinical significance. Mol Asp Med. 1981;4:1–23.CrossRefGoogle Scholar
  17. Pantopoulos K. TfR2 links iron metabolism and erythropoiesis. Blood. 2015;125:1055–6.  https://doi.org/10.1182/blood-2014-12-617571.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Vincent JB, Love S. The binding and transport of alternative metals by transferrin. Biochim Biophys Acta. 2012;1820:362–78.  https://doi.org/10.1016/j.bbagen.2011.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Yang F, Lum JB, McGill JR, Moore CM, Naylor SL, van Bragt PH, et al. Human transferrin: cDNA characterization and chromosomal localization. Proc Natl Acad Sci USA. 1984;81:2752–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Zakin MM. Regulation of transferrin gene expression. FASEB J. 1992;6:3253–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • George Papanikolaou
    • 1
  • Konstantinos Gkouvatsos
    • 2
  • Kostas Pantopoulos
    • 3
    Email author
  1. 1.Department of Nutrition and Dietetics, School of Health Science and EducationHarokopion UniversityAthensGreece
  2. 2.Hôpitaux universitaires de GenèveGenèveSwitzerland
  3. 3.Lady Davis Institute for Medical Research and Department of MedicineMcGill UniversityMontrealCanada