Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Transcription Factor 4

  • Alex R. Gogliettino
  • Andrew J. KennedyEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101934


 bHLHb19;  E2-2;  FECD3;  ITF2;  SEF2-1;  TCF4

Historical Background

Transcription factor 4 (TCF4) is a member of the E protein family of transcription factors that play a critical role in development. As a family, E proteins were named because they bind the Ephrussi-box (E-box) sequence (5′-CANNTG-3′) and were first investigated as regulators in B-cell development, but TCF4 specifically has been more closely tied to disorders of the central nervous system. Despite its medical relevance, mutations in the Tcf4gene have been linked to intellectual disability, schizophrenia, obesity, and corneal dystrophy; little was known about the biochemical and neurological roles of TCF4 until quite recently. It is now known that TCF4 responds to calcium signaling, alters epigenetic modifications necessary for learning and memory, and regulates the transcription of genes that modulate plasticity in hippocampal and cortical neurons. Because TCF4 was initially investigated across multiple...

This is a preview of subscription content, log in to check access.



The authors' work is supported by the Pitt-Hopkins Research Foundation and an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM0103423.


  1. Albanna A, Choudhry Z, Harvey PO, Fathalli F, Cassidy C, Sengupta SM, et al. TCF4 gene polymorphism and cognitive performance in patients with first episode psychosis. Schizophr Res. 2014;152(1):124–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Baratz KH, Tosakulwong N, Ryu E, Brown WL, Branham K, Chen W, et al. E2-2 protein and Fuchs’s corneal dystrophy. N Engl J Med. 2010;363(11):1016–24.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Brzozka MM, Rossner MJ. Deficits in trace fear memory in a mouse model of the schizophrenia risk gene TCF4. Behav Brain Res. 2013;237:348–56.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Brzozka MM, Radyushkin K, Wichert SP, Ehrenreich H, Rossner MJ. Cognitive and sensorimotor gating impairments in transgenic mice overexpressing the schizophrenia susceptibility gene Tcf4 in the brain. Biol Psychiatry. 2010;68(1):33–40.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Dubal DB, Yokoyama JS, Zhu L, Broestl L, Worden K, Wang D, et al. Life extension factor klotho enhances cognition. Cell Rep. 2014;7(4):1065–76.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Forrest MP, Hill MJ, Quantock AJ, Martin-Rendon E, Blake DJ. The emerging roles of TCF4 in disease and development. Trends Mol Med. 2014;20(6):322–31.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Gräff J, Tsai L-H. The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol. 2013;53:311–30.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Grubisic V, Kennedy AJ, Sweatt JD, Parpura V. Pitt-Hopkins mouse model has altered particular gastrointestinal transits in vivo. Autism Res. 2015;8(5):629–33.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Hui L, Rao WW, Yu Q, Kou C, Wu JQ, He JC, et al. TCF4 gene polymorphism is associated with cognition in patients with schizophrenia and healthy controls. J Psychiatr Res. 2015;69:95–101.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Kee BL. E and ID proteins branch out. Nat Rev Immunol. 2009;9(3):175–84.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Kennedy AJ, Sweatt JD. Drugging the methylome: DNA methylation and memory. Crit Rev Biochem Mol Biol. 2016: 1–10.Google Scholar
  12. Kennedy AJ, Rahn EJ, Paulukaitis BS, Savell KE, Kordasiewicz HB, Wang J, et al. Tcf4 regulates synaptic plasticity, DNA methylation, and memory function. Cell Rep. 2016;16(10):2666–85.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Kharbanda M, Kannike K, Lampe A, Berg J, Timmusk T, Sepp M. Partial deletion of TCF4 in three generation family with non-syndromic intellectual disability, without features of Pitt-Hopkins syndrome. Eur J Med Genet. 2016;59(6–7):310–4.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Khund-Sayeed S, He X, Holzberg T, Wang J, Rajagopal D, Upadhyay S, et al. 5-hydroxymethylcytosine in E-box motifs ACAT|GTG and ACAC|GTG increases DNA-binding of the B-HLH transcription factor TCF4. Integr Biol. 2016;8(9):936–45.CrossRefGoogle Scholar
  15. Larsson G, Schleucher J, Onions J, Hermann S, Grundström T, Wijmenga SS. A novel target recognition revealed by calmodulin in complex with the basic helix-loop-helix transcription factor SEF2-1/E2-2. Protein Sci: A Publication of the Protein Society. 2001;10(1):169–86.CrossRefGoogle Scholar
  16. Larsson G, Schleucher J, Onions J, Hermann S, Grundström T, Wijmenga SS. Backbone dynamics of a symmetric calmodulin dimer in complex with the calmodulin-binding domain of the basic-helix-loop-helix transcription factor SEF2-1/E2-2: a highly dynamic complex. Biophys J. 2005;89(2):1214–26.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Lennertz L, Rujescu D, Wagner M, Frommann I, Schulze-Rauschenbach S, Schuhmacher A, et al. Novel schizophrenia risk gene TCF4 influences verbal learning and memory functioning in schizophrenia patients. Neuropsychobiology. 2011;63(3):131–6.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Li J, Chen Z, Wang F, Ouyang Y, Zhang N, Yang M, et al. Polymorphisms of the TCF4 gene are associated with the risk of schizophrenia in the Han Chinese. Am J Med Genet B Neuropsychiatr Genet. 2016;171(8):1006–1012.CrossRefGoogle Scholar
  19. Marangi G, Ricciardi S, Orteschi D, Lattante S, Murdolo M, Dallapiccola B, et al. The Pitt-Hopkins syndrome: report of 16 new patients and clinical diagnostic criteria. Am J Med Genet A. 2011;155a(7):1536–45.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Navarrete K, Pedroso I, De Jong S, Stefansson H, Steinberg S, Stefansson K, et al. TCF4 (e2-2; ITF2): a schizophrenia-associated gene with pleiotropic effects on human disease. Am J Med Genet B Neuropsychiatr Genet: the official publication of the Int Soc Psychiatr Genet. 2013;162b(1):1–16.CrossRefGoogle Scholar
  21. Quednow BB, Ettinger U, Mossner R, Rujescu D, Giegling I, Collier DA, et al. The schizophrenia risk allele C of the TCF4 rs9960767 polymorphism disrupts sensorimotor gating in schizophrenia spectrum and healthy volunteers. J Neurosci. 2011;31(18):6684–91.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Quednow BB, Brinkmeyer J, Mobascher A, Nothnagel M, Musso F, Gründer G, et al. Schizophrenia risk polymorphisms in the TCF4 gene interact with smoking in the modulation of auditory sensory gating. Proc Natl Acad Sci U S A. 2012;109(16):6271–6.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Quednow BB, Brzozka MM, Rossner MJ. Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective. Cell Mol Life Sci. 2014;71(15):2815–35.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Rannals MD, Hamersky GR, Page SC, Campbell MN, Briley A, Gallo RA, et al. Psychiatric risk gene transcription factor 4 regulates intrinsic excitability of prefrontal neurons via repression of SCN10a and KCNQ1. Neuron. 2016;90(1):43–55.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Sepp M, Kannike K, Eesmaa A, Urb M, Timmusk T. Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5’ exon usage and splicing. PLoS One. 2011;6(7):e22138.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron. 2006;52(3):475–84.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. Common variants conferring risk of schizophrenia. Nature. 2009;460(7256):744–7.PubMedPubMedCentralGoogle Scholar
  28. Steinberg S, de Jong S, Andreassen OA, Werge T, Borglum AD, Mors O, et al. Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet. 2011;20(20):4076–81.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Steinbusch CV, van Roozendaal KE, Tserpelis D, Smeets EE, Kranenburg-de Koning TJ, de Waal KH, et al. Somatic mosaicism in a mother of two children with Pitt-Hopkins syndrome. Clin Genet. 2013;83(1):73–7.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Sweatt JD. Pitt-Hopkins syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp Mol Med. 2013;45:e21.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Sweatt JD. Neural plasticity & behavior – sixty years of conceptual advances. J Neurochem. 2016;139(Suppl 2):179–199.Google Scholar
  32. Whalen S, Heron D, Gaillon T, Moldovan O, Rossi M, Devillard F, et al. Novel comprehensive diagnostic strategy in Pitt-Hopkins syndrome: clinical score and further delineation of the TCF4 mutational spectrum. Hum Mutat. 2012;33(1):64–72.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of ChemistryBates CollegeLewistonUSA