Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Paula M. MalobertiEmail author
  • Ana F. CastilloEmail author
  • Ulises Orlando
  • Ernesto J. Podesta
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101897


Historical Background

The acyl-CoA synthetases (ACS) are enzymes that catalyze the production of acyl-CoA from fatty acids. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different ACS.

The presence of an ACS specific for arachidonate had been shown by enzymatic characterizations in 1985 (Laposata et al. 1985), and later the primary structure, enzymatic properties, and tissue expression of this newly identified ACS enzyme, designated ACS4 (later named ACSL4), were described by Kang et al. (1997). It belongs to the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12–20 carbon atoms. The human and mouse genes for the ACSLs are termed ACSL1,3-6 and Acsl1,3-6, respectively. Each isoform has a substrate preference, subcellular localization, and tissue distribution and has been...

This is a preview of subscription content, log in to check access.


  1. Cao Y, Murphy KJ, McIntyre TM, Zimmerman GA, Prescott SM. Expression of fatty acid-CoA ligase 4 during development and in brain. FEBS Lett. 2000;467:263–7.PubMedCrossRefGoogle Scholar
  2. Cao Y, Dave KB, Doan TP, Prescott SM. Fatty acid CoA ligase 4 is up-regulated in colon adenocarcinoma. Cancer Res. 2001;61:8429–34.PubMedPubMedCentralGoogle Scholar
  3. Castillo AF, Maciel FC, Castilla R, Duarte A, Maloberti P, Paz C, et al. cAMP increases mitochondrial cholesterol transport through the induction of arachidonic acid release inside this organelle in Leydig cells. FEBS J. 2006;273:5011–21.PubMedCrossRefGoogle Scholar
  4. Castillo AF, Castilla R, Duarte A, Mele P, Orlando U, Neuman I, et al. Intramitochondrial arachidonic acid as regulator of two different cellular functions: steroid biosynthesis and tumor cell proliferation. Curr Trends Endocrinol. 2008;3:57–71.Google Scholar
  5. Cooke M, Mele P, Maloberti P, Duarte A, Poderoso C, Orlando U, et al. Tyrosine phosphatases as key regulators of StAR induction and cholesterol transport: SHP2 as a potential tyrosine phosphatase involved in steroid synthesis. Mol Cell Endocrinol. 2010;336:63–9.PubMedCrossRefGoogle Scholar
  6. Cui M, Xiao Z, Sun B, Wang Y, Zheng M, Ye L, et al. Involvement of cholesterol in hepatitis B virus X protein-induced abnormal lipid metabolism of hepatoma cells via up-regulating miR-205-targeted ACSL4. Biochem Biophys Res Commun. 2014;445:651–5.PubMedCrossRefGoogle Scholar
  7. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2016. doi:10.1038/nchembio.2239.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Golej DL, Askari B, Kramer F, Barnhart S, Vivekanandan-Giri A, Pennathur S, et al. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E(2) release from human arterial smooth muscle cells. J Lipid Res. 2011;52:782–93. doi:10.1194/jlr.M013292.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kaller M, Liffers ST, Oeljeklaus S, Kuhlmann K, Röh S, Hoffmann R, et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics. 2011;10(8):M111.010462. doi:10.1074/mcp.M111.010462.CrossRefGoogle Scholar
  10. Kan CF, Singh AB, Stafforini DM, Azhar S, Liu J. Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation. J Lipid Res. 2014;55:1657–67. doi:10.1194/jlr.M045971.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kang MJ, Fujino T, Sasano H, Minekura H, Yabuki N, Nagura H, et al. A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci U S A. 1997;94:2880–4.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Laposata M, Reich EL, Majerus PW. Arachidonoyl-CoA synthetase. Separation from nonspecific acyl-CoA synthetase and distribution in various cells and tissues. J Biol Chem. 1985;260:11016–20.PubMedPubMedCentralGoogle Scholar
  13. Lewin TM, Van Horn CG, Krisans SK, Coleman RA. Rat liver acyl-CoA synthetase 4 is a peripheral-membrane protein located in two distinct subcellular organelles, peroxisomes, and mitochondrial-associated membrane. Arch Biochem Biophys. 2002;404:263–70.PubMedCrossRefGoogle Scholar
  14. Liu Z, Huang Y, Zhang Y, Chen D, Zhang YQ. Drosophila Acyl-CoA synthetase long-chain family member 4 regulates axonal transport of synaptic vesicles and is required for synaptic development and transmission. J Neurosci. 2011;31:2052–63. doi:10.1523/JNEUROSCI.3278-10.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Maloberti P, Castilla R, Castillo F, Maciel FC, Mendez CF, Paz C, et al. Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis. FEBS J. 2005;272:1804–14.PubMedCrossRefGoogle Scholar
  16. Maloberti P, Maciel FC, Castillo AF, Castilla R, Duarte A, Toledo MF, et al. Enzymes involved in arachidonic acid release in adrenal and Leydig cells. Mol Cell Endocrinol. 2007;265–266:113–20.PubMedCrossRefGoogle Scholar
  17. Maloberti PM, Duarte AB, Orlando UD, Pasqualini ME, Solano AR, Lopez-Otin C, et al. Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells. PLoS One. 2010;5:e15540.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Meloni I, Muscettola M, Raynaud M, Longo I, Bruttini M, Moizard MP, et al. FACL4, encoding fatty acid-CoA ligase 4, is mutated in nonspecific X-linked mental retardation. Nat Genet. 2002;30:436–40.PubMedCrossRefGoogle Scholar
  19. Meloni I, Parri V, De Filippis R, Ariani F, Artuso R, Bruttini M, et al. The XLMR gene ACSL4 plays a role in dendritic spine architecture. Neuroscience. 2009;159:657–69. doi:10.1016/j.neuroscience.2008.11.056.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Miyares RL, Stein C, Renisch B, Anderson JL, Hammerschmidt M, Farber SA. Long-chain Acyl-CoA synthetase 4A regulates Smad activity and dorsoventral patterning in the zebrafish embryo. Dev Cell. 2013;27:635–47.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Monaco ME, Creighton CJ, Lee P, Zou X, Topham MK, Stafforini DM. Expression of long-chain fatty acyl-CoA synthetase 4 in breast and prostate cancers is associated with sex steroid hormone receptor negativity. Transl Oncol. 2010;3:91–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Orlando UD, Garona J, Ripoll GV, Maloberti PM, Solano AR, Avagnina A, et al. The functional interaction between Acyl-CoA synthetase 4, 5-lipooxygenase and cyclooxygenase-2 controls tumor growth: a novel therapeutic target. PLoS One. 2012;7:e40794.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Orlando U, Cooke M, Maciel FC, Papadopoulos V, Podesta EJ, Maloberti P. Characterization of the mouse promoter region of the acyl-CoA synthetase 4 gene: role of Sp1 and CREB. Mol Cell Endocrinol. 2013;369:15–26.PubMedCrossRefGoogle Scholar
  24. Orlando UD, Castillo AF, Dattilo MA, Solano AR, Maloberti PM, Podesta EJ. Acyl-CoA synthetase-4, a new regulator of mTOR and a potential therapeutic target for enhanced estrogen receptor function in receptor-positive and -negative breast cancer. Oncotarget. 2015;6:42632–50.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Paz C, Cornejo Maciel F, Gorostizaga A, Castillo AF, Mori Sequeiros Garcia MM, Maloberti PM, et al. Role of protein phosphorylation and tyrosine phosphatases in the adrenal regulation of steroid synthesis and mitochondrial function. Front Endocrinol (Lausanne). 2016;7:60. doi:10.3389/fendo.2016.00060.CrossRefGoogle Scholar
  26. Soupene E, Kuypers FA. Mammalian long-chain acyl-CoA synthetases. Exp Biol Med (Maywood). 2008;233:507–21.CrossRefGoogle Scholar
  27. Sung YK, Hwang SY, Park MK, Bae HI, Kim WH, Kim JC, et al. Fatty acid-CoA ligase 4 is overexpressed in human hepatocellular carcinoma. Cancer Sci. 2003;94:421–4.PubMedCrossRefGoogle Scholar
  28. Wu X, Deng F, Li Y, Daniels G, Du X, Ren Q, et al. ACSL4 promotes prostate cancer growth, invasion and hormonal resistance. Oncotarget. 2015;6:44849–63.PubMedPubMedCentralGoogle Scholar
  29. Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26:165–76. doi:10.1016/j.tcb.2015.10.014.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zhang Y, Chen D, Wang Z. Analyses of mental dysfunction-related ACSl4 in Drosophila reveal its requirement for Dpp/BMP production and visual wiring in the brain. Hum Mol Genet. 2009;18:3894–905. doi:10.1093/hmg/ddp332.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zhang C, Li A, Gao S, Zhang X, Xiao H. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion. PLoS One. 2011;6:e21233. doi:10.1371/journal.pone.0021233.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET; Departamento de Bioquímica HumanaFacultad de Medicina, Universidad de Buenos AiresBuenos AiresArgentina