Skip to main content

Synapsins (SYN)

  • Reference work entry
  • First Online:
  • 93 Accesses

Synonyms

Protein I; Protein III

Historical Background

Synapsins were the first proteins identified in presynaptic terminals: Paul Greengard and colleagues identified protein I (now synapsin I, Kuo and Greengard 1969) as a major neuronal substrate for the cyclic AMP-dependent protein kinase (PKA) in rat brain (Johnson et al. 1972; Ueda et al. 1973). Protein I was also the first identified substrate of the Ca2+/calmodulin-dependent protein kinase (De Camilli et al. 1990), indicating that synapsins serve as a central hub of numerous protein kinase signaling pathways (see below). Early on, it was appreciated that there are multiple synapsins; two isoforms, protein Ia (86 kDa) and Ib (80 kDa), could be distinguished by their molecular weights (Forn and Greengard 1978). We now know that there are even more synapsin isoforms (see Fig. 1). Protein I was found to be enriched in presynaptic terminals and bound to synaptic vesicles within these terminals, causing it to be renamed synapsin I (De...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Cheetham JJ, Hilfiker S, Benfenati F, Weber T, Greengard P, Czernik AJ. Identification of synapsin I peptides that insert into lipid membranes. Biochem J. 2001;354:57–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chi P, Greengard P, Ryan TA. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron. 2003;38:69–78.

    Article  PubMed  CAS  Google Scholar 

  • Chin LS, LI L, Ferreira A, Kosik KS, Greengard P. Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc Natl Acad Sci U S A. 1995;92:9230–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czernik AJ, Pang DT, Greengard P. Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc Natl Acad Sci USA. 1987;84:7518–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Camilli P, Cameron R, Greengard P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol. 1983;96:1337–54.

    Article  PubMed  CAS  Google Scholar 

  • De Camilli P, Benfenati F, Valtorta F, Greengard P. The synapsins. Annu Rev Cell Biol. 1990;6:433–60.

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Chi P, Blanpied TA, Xu Y, Magarinos AM, Ferreira A, Takahashi RH, Kao HT, Mcewen BS, Ryan TA, Augustine GJ, Greengard P. Regulation of neurotransmitter release by synapsin III. J Neurosci. 2002;22:4372–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira A, Li L, Chin LS, Greengard P, Kosik KS. Postsynaptic element contributes to the delay in synaptogenesis in synapsin I-deficient neurons. Mol Cell Neurosci. 1996;8:286–99.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira A, Chin LS, Li L, Lanier LM, Kosik KS, Greengard P. Distinct roles of synapsin I and synapsin II during neuronal development. Mol Med. 1998;4:22–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forn J, Greengard P. Depolarizing agents and cyclic nucleotides regulate the phosphorylation of specific neuronal proteins in rat cerebral cortex slices. Proc Natl Acad Sci USA. 1978;75:5195–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gitler D, Xu Y, Kao HT, Lin D, Lim S, Feng J, Greengard P, Augustine GJ. Molecular determinants of synapsin targeting to presynaptic terminals. J Neurosci. 2004a;24:3711–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P, Augustine GJ. Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci. 2004b;24:11368–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gitler D, Cheng Q, Greengard P, Augustine GJ. Synapsin IIa controls the reserve pool of glutamatergic synaptic vesicles. J Neurosci. 2008;28:10835–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilfiker S, Schweizer FE, Kao HT, Czernik AJ, Greengard P, Augustine GJ. Two sites of action for synapsin domain E in regulating neurotransmitter release. Nat Neurosci. 1998;1:29–35.

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker S, Benfenati F, Doussau F, Nairn AC, Czernik AJ, Augustine GJ, Greengard P. Structural domains involved in the regulation of transmitter release by synapsins. J Neurosci. 2005;25:2658–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hosaka M, Sudhof TC. Homo- and heterodimerization of synapsins. J Biol Chem. 1999;274:16747–53.

    Article  PubMed  CAS  Google Scholar 

  • Johnson EM, Ueda T, Maeno H, Greengard P. Adenosine 3′, 5-monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum. J Biol Chem. 1972;247:5650–2.

    PubMed  CAS  Google Scholar 

  • Kao HT, Porton B, Czernik AJ, Feng J, Yiu G, Haring M, Benfenati F, Greengard P. A third member of the synapsin gene family. Proc Natl Acad Sci USA. 1998;95:4667–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kile BM, Guillot TS, Venton BJ, Wetsel WC, Augustine GJ, Wightman RM. Synapsins differentially control dopamine and serotonin release. J Neurosci. 2010;30:9762–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuo JF, Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3′ ,5′ -monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci USA. 1969;64:1349–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Chin LS, Greengard P, Copeland NG, Gilbert DJ, Jenkins NA. Localization of the synapsin II (SYN2) gene to human chromosome 3 and mouse chromosome 6. Genomics. 1995;28:365–6.

    Article  PubMed  CAS  Google Scholar 

  • Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P. Distinct pools of synaptic vesicles in neurotransmitter release. Nature. 1995;375:493–7.

    Article  PubMed  CAS  Google Scholar 

  • Porton B, Ferreira A, Delisi LE, Kao HT. A rare polymorphism affects a mitogen-activated protein kinase site in synapsin III: possible relationship to schizophrenia. Biol Psychiatry. 2004;55:118–25.

    Article  PubMed  CAS  Google Scholar 

  • Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Sudhof TC. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature. 1995;375:488–93.

    Article  PubMed  CAS  Google Scholar 

  • Song SH, Augustine GJ. Synapsin isoforms regulating GABA release from hippocampal interneurons. J Neurosci. 2016;36:6742–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sudhof TC, Czernik AJ, Kao HT, Takei K, Johnston PA, Horiuchi A, Kanazir SD, Wagner MA, Perin MS, De Camilli P, et al. Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science. 1989;245:1474–80.

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Maeno H, Greengard P. Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′:5′ -monophosphate. J Biol Chem. 1973;248:8295–305.

    PubMed  CAS  Google Scholar 

  • Venton BJ, Seipel AT, Phillips PE, Wetsel WC, Gitler D, Greengard P, Augustine GJ, Wightman RM. Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J Neurosci. 2006;26:3206–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villanueva M, Thornley K, Augustine GJ, Wightman RM. Synapsin II negatively regulates catecholamine release. Brain Cell Biol. 2006;35:125–36.

    Article  PubMed  CAS  Google Scholar 

  • Yang-Feng TL, Degennaro LJ, Francke U. Genes for synapsin I, a neuronal phosphoprotein, map to conserved regions of human and murine X chromosomes. Proc Natl Acad Sci U S A. 1986;83:8679–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Augustine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Song, SH., Augustine, G.J. (2018). Synapsins (SYN). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101889

Download citation

Publish with us

Policies and ethics