Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Cristina HarmelinkEmail author
  • Xianghu Qu
  • Scott H. Baldwin
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101887


Historical Background

Tie1 (tyrosine kinase with immunoglobulin and epidermal growth factor-like domains 1) was first reported in 1992 along with its related receptor Tie2 (Qu and Baldwin 2013). These Tie receptors are co-expressed in the endothelium, the innermost layer of cells lining blood and lymphatic vasculature, as well as all the chambers of the heart. Tie1 and Tie2 appear to be mutually expressed in all endothelia, as no study to date has identified a subpopulation of endothelial cells that exclusively expresses just one Tie receptor. However, their expression and activity are differentially regulated, as is evident in the lymphatic endothelium where Tie1 expression predominates and Tie2 expression is relatively diminished (Shen et al. 2014). Null mutations of Tie1 result in vascular defects and embryonic demise, and conditional...

This is a preview of subscription content, log in to check access.


  1. Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011;17(11):1371–80.PubMedPubMedCentralCrossRefGoogle Scholar
  2. D’Amico G, Korhonen EA, Anisimov A, Zarkada G, Holopainen T, Hägerling R, Kiefer F, Eklund L, Sormunen R, Elamaa H, et al. Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy. J Clin Invest. 2014;124(2):824–34.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Eklund L, Kangas J, Saharinen P. Angiopoietin-tie signalling in the cardiovascular and lymphatic systems. Clin Sci (Lond). 2017;131(1):87–103.CrossRefGoogle Scholar
  4. Jeltsch M, Leppänen VM, Saharinen P, Alitalo K. Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb Perspect Biol. 2013;5(9).PubMedPubMedCentralCrossRefGoogle Scholar
  5. Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK, Secker GA, Agalarov Y, Demir CS, Lawrence DM, Sutton DL, et al. Gata2 is required for lymphatic vessel valve development and maintenance. J Clin Invest. 2015;125(8):2979–94.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Kontos CD, Cha EH, York JD, Peters KG. The endothelial receptor tyrosine kinase tie1 activates phosphatidylinositol 3-kinase and akt to inhibit apoptosis. Mol Cell Biol. 2002;22(6):1704–13.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Korhonen EA, Lampinen A, Giri H, Anisimov A, Kim M, Allen B, Fang S, D’Amico G, Sipilä TJ, Lohela M, et al. Tie1 controls angiopoietin function in vascular remodeling and inflammation. J Clin Invest. 2016;126(9):3495–510.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Korhonen J, Partanen J, Armstrong E, Vaahtokari A, Elenius K, Jalkanen M, Alitalo K. Enhanced expression of the tie receptor tyrosine kinase in endothelial cells during neovascularization. Blood. 1992;80(10):2548–55.PubMedPubMedCentralGoogle Scholar
  9. Malik NM, Jin P, Raatz Y, Sumariwalla PF, Kiriakidis S, Shepard M, Feldmann M, Paleolog EM. Regulation of the angiopoietin-tie ligand-receptor system with a novel splice variant of tie1 reduces the severity of murine arthritis. Rheumatology (Oxford). 2010;49(10):1828–39.CrossRefGoogle Scholar
  10. Marron MB, Hughes DP, Edge MD, Forder CL, Brindle NP. Evidence for heterotypic interaction between the receptor tyrosine kinases tie-1 and tie-2. J Biol Chem. 2000;275(50):39741–6.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Qu X, Baldwin HS. Tie receptor signaling in cardiac lymphangiogenesis. New York: Springer; 2013.CrossRefGoogle Scholar
  12. Qu X, Tompkins K, Batts LE, Puri M, Baldwin HS, Baldwin S. Abnormal embryonic lymphatic vessel development in tie1 hypomorphic mice. Development. 2010;137(8):1285–95.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Qu X, Zhou B, Scott BH. Tie1 is required for lymphatic valve and collecting vessel development. Dev Biol. 2015;399(1):117–28.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Rasmussen AL, Okumura A, Ferris MT, Green R, Feldmann F, Kelly SM, Scott DP, Safronetz D, Haddock E, LaCasse R, et al. Host genetic diversity enables ebola hemorrhagic fever pathogenesis and resistance. Science. 2014;346(6212):987–91.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Savant S, La Porta S, Budnik A, Busch K, Hu J, Tisch N, Korn C, Valls AF, Benest AV, Terhardt D, et al. The orphan receptor tie1 controls angiogenesis and vascular remodeling by differentially regulating tie2 in tip and stalk cells. Cell Rep. 2015;12(11):1761–73.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Seegar TC, Eller B, Tzvetkova-Robev D, Kolev MV, Henderson SC, Nikolov DB, Barton WA. Tie1-tie2 interactions mediate functional differences between angiopoietin ligands. Mol Cell. 2010;37(5):643–55.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Shen B, Shang Z, Wang B, Zhang L, Zhou F, Li T, Chu M, Jiang H, Wang Y, Qiao T, et al. Genetic dissection of tie pathway in mouse lymphatic maturation and valve development. Arterioscler Thromb Vasc Biol. 2014;34(6):1221–30.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Sweet DT, Jiménez JM, Chang J, Hess PR, Mericko-Ishizuka P, Fu J, Xia L, Davies PF, Kahn ML. Lymph flow regulates collecting lymphatic vessel maturation in vivo. J Clin Invest. 2015;125(8):2995–3007.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Woo KV, Baldwin HS. Role of tie1 in shear stress and atherosclerosis. Trends Cardiovasc Med. 2011;21(4):118–23.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Woo KV, Qu X, Babaev VR, Linton MF, Guzman RJ, Fazio S, Baldwin HS. Tie1 attenuation reduces murine atherosclerosis in a dose-dependent and shear stress-specific manner. J Clin Invest. 2011;121(4):1624–35.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cristina Harmelink
    • 1
    Email author
  • Xianghu Qu
    • 1
  • Scott H. Baldwin
    • 1
  1. 1.Department of Pediatrics, Division of Pediatric CardiologyVanderbilt University Medical CenterNashvilleUSA